The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted...The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.展开更多
The addition of distillation residues to the FCC feedstock leads to increased vanadiumloading on catalyst and the problems in catalyst deactivation.The deactivation process is related tothe destructive attack on the z...The addition of distillation residues to the FCC feedstock leads to increased vanadiumloading on catalyst and the problems in catalyst deactivation.The deactivation process is related tothe destructive attack on the zeolite crystallite by V<sub>2</sub>O<sub>5</sub>.Formation of low melting pointV<sub>2</sub>O<sub>5</sub>-USY-Na<sub>2</sub>O phases accelerates the diffusion of vanadium through the catalyst.A proposedmechanism,based on accelerated dealumination,is shown in the paper.Comparative vanadiumtrapping performances have been tested for FCC catalysts and the crystalline ABO<sub>3</sub> as an effectivevanadium trap is demonstrated in laboratory tests.展开更多
Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins...Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.展开更多
Radio frequency plasma was used to prepare a vanadium catalyst. The resultsshowed that activating time of the catalyst could be shortened quickly and the catalytic activitywas improved to some extent with the use of p...Radio frequency plasma was used to prepare a vanadium catalyst. The resultsshowed that activating time of the catalyst could be shortened quickly and the catalytic activitywas improved to some extent with the use of plasma. Catalyst Ls-9 was prepared under an optimalcondition of 40 W discharge power, 10 min discharge time and 8 Pa gas pressure. The catalyticactivity was up to 54.7% at 410℃, which was 2.2% higher than that of the Ls-8 catalyst. Only 10 minwas needed to activate the catalyst with plasma, which was 1/9 of the traditional calcination time.For Ls-9, both the endothermic as well as the exothermic peaks detected by differential thermalanalysis shifted to higher temperatures obviously, indicating that its crystal phase could melteasily. There existed an apparent endothermic peak at 283℃. SEM photographs showed a uniform sizedistribution. It is inferred that the quadrivalent vanadium compound may exist mainly in the form ofVOSO_4.展开更多
Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its...Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its vanadium concentration. Most of these catalysts are usually supported on alumina containing a variable percentage of elements such as nickel or molybdenum. Hence these catalysts contain environmentally critical, and economically valuable metals such as molyb denum, vanadium, and, nickel. In this paper, a spent HDS catalyst was treated with caustic soda solution. Parameters such as temperature, time, and NaOH solution concentration have been studied thoroughly, in order to settle the appropriate conditions for the maximum recovery of molybdenum and vanadium. Under the best leaching conditions (20 %w NaOH, room temperature, 2 h) about 95% recovery of Mo and V was achieved, and the recovery of nickel obtained was of 99% in the form of NiAlO4.展开更多
A nano-structured iron catalyst for syngas conversion to hydrocarbons in Fischer-Tropsch synthesis(FTS) was prepared by micro-emulsion method.Compositions of bulk iron phase and phase transformations of carbonaceous...A nano-structured iron catalyst for syngas conversion to hydrocarbons in Fischer-Tropsch synthesis(FTS) was prepared by micro-emulsion method.Compositions of bulk iron phase and phase transformations of carbonaceous species during catalyst deactivation in FTS reaction were characterized by temperature-programmed surface reaction with hydrogen(TPSR-H 2 ),and XRD techniques.Many carbonaceous species on surface and bulk of the nano-structured iron catalysts were completely identified by combined TPSR-H 2 and XRD spectra and which were compared with those recorded on conventional co-precipitated iron catalyst.The results reveal that the catalyst deactivation results from the formation of inactive carbide phases and surface carbonaceous species like graphite,and it will be increased when the particle size of iron oxides was reduced in FTS iron catalyst.展开更多
The effect of ultrasonic cavitations on the activity of vanadium catalysts atlow temperatures for the oxidation of sulfur dioxide, in which refined carbonized mother liquor hadbeen added, was investigated. Twenty minu...The effect of ultrasonic cavitations on the activity of vanadium catalysts atlow temperatures for the oxidation of sulfur dioxide, in which refined carbonized mother liquor hadbeen added, was investigated. Twenty minutes were needed to produce obvious cavitations when thecatalyst raw material was treated in the 50 W ultrasonic generator. However, only 10 minutes wouldbe needed in a 150 W ultrasonic generator. The higher the temperature of the wet material, the lesstime was needed to produce cavitations, and the optimal temperature was 60℃. The water content inthe wet material mainly affected the quantity of cavitations. Ls-8 catalyst was prepared usingultrasonic. Its activity for conversion of SO_2 reached to 52.5% at 410℃ and 4.2% at 350℃. Thedifferential thermal analyses indicate that both endothermic peaks and exothermic peaks noticeablyshifted forward compared with Ls catalyst prepared without ultrasonic, and SEM results show auniform pore size distribution for Ls-8 catalyst.展开更多
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and pr...A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.展开更多
The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response tec...The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response technique. The reaction intermediates, buterie and furan, were found in the reaction effluent under near industrial feed condition (3% butane+15%O2), while dihydrofuran was detected at high butane concentration (12% butane, 5%O2). Some intermediates of MA decomposition were also identified. Detection of these intermediates shows that the vanadium phosphorus oxides are able to dehydrogenate butane to butene, and butene further to form MA. Based on these observations, a modified scheme of reaction network is proposed. The transient experiments show that butane in the gas phase may directly react with oxygen both on the surface and from the metal oxide lattice, without a proceeding adsorption step. Gas phase oxygen can be adsorbed and transformed to surface lattice oxygen but it can not participate in selective oxidation. Adsorbed oxygen leads to deep oxidation, while lattice oxygen leads to selective oxidation.展开更多
Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadiu...Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO).展开更多
Boehmite nanoparticles with a high surface area and a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support vanadium‐oxo‐sulfate and molybdenum hexac...Boehmite nanoparticles with a high surface area and a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support vanadium‐oxo‐sulfate and molybdenum hexacarbonyl complexes. These supported catalysts were then characterized by Fou‐rier‐transform infrared spectroscopy, powder X‐ray diffraction, thermogravimetry and differential thermal analysis, X‐ray‐photoelectron spectroscopy, elemental analysis, inductively coupled plasma, and transmission electron microscopy techniques. The catalysts were subsequently used for the epoxidation of cis‐cyclooctene, and the experimental procedures were optimized. The progress of the reactions was investigated by gas‐liquid chromatography. Recycling experiments revealed that these nanocatalysts could be repeatedly used several times for a nearly complete epoxidation of cis‐cyclooctene. The optimized experimental conditions were also used successfully for the epoxida‐tion of some other substituted alkenes.展开更多
The NWS-1 vanadium catalyst for converting wet gas is a novel dedicated vanadium catalyst independently developed by the Research Institute of SINOPEC Nanjing Chemical Industry Co., Ltd.This catalyst can be used to tr...The NWS-1 vanadium catalyst for converting wet gas is a novel dedicated vanadium catalyst independently developed by the Research Institute of SINOPEC Nanjing Chemical Industry Co., Ltd.This catalyst can be used to treat the sour gas stream discharged from the power plants, the refinery, the petrochemical enterprise, the smeltery, the coking units and coal chemical plants, with the sulfur recovery rate reaching over 99% to meet the latest national environmentally benign emission standard.展开更多
Phase composition and surface characterization of vanadium-phosphorus catalysts containing rare earth elements were investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), NH3-tempera...Phase composition and surface characterization of vanadium-phosphorus catalysts containing rare earth elements were investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), NH3-temperature programmed desorption (NH3-TPD) and so on. The catalysts were used for the selective oxidation of n-butane to maleic anhydride. Catalytic performance has been carried out in a fixed-bed reactor. Experimental results showed that yield of maleic anhydride was enhanced by 4%~15% over vanadium-phosphorus catalysts by the addition of rare earth elements. Rare earth elements as promotors played the role of increasing surface acidity of the catalysts.展开更多
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ...A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.展开更多
A novel vanadium oxide catalyst supported on active carbon was prepared by an incipient wetness impregnation method, and the precursor was obtained from oxalic acid aqueous solutions of NH4VO3. The catalyst was applie...A novel vanadium oxide catalyst supported on active carbon was prepared by an incipient wetness impregnation method, and the precursor was obtained from oxalic acid aqueous solutions of NH4VO3. The catalyst was applied liquid phase oxidation of glyoxal to glyoxylic acid. It was found that V2O5/C catalyst exhibited obvious activity for glyoxal oxidation. Glyoxylic acid could be obtained without pH regulation during the reaction. By using this catalyst, the conversion of glyoxal and the yield of glyoxalic acid were 29.2% and 13.6%, respectively at 313 K and oxygen flow 0.1 L/rain after reaction for 10 h.展开更多
Precursor decomposition was used for the preparation of VTeO/SBA-15 catalyst for the selective oxidation of propane to acrolein. The catalyst shows a better performance compared with those prepared by conventional imp...Precursor decomposition was used for the preparation of VTeO/SBA-15 catalyst for the selective oxidation of propane to acrolein. The catalyst shows a better performance compared with those prepared by conventional impregnant method. A yield of 9.3% of acrolein was achieved with 2% V loadings at 500 ℃. XRD, N2-adsorption, H2-TPR, Py-IR and XPS measurements were used to unclose the relationship between the structure and performance of the catalyst.展开更多
Extraction of vanadium from black shale was attempted in pressure acid leaching.The chemical components of the sample obtained from Guizhou Province of China show that it contains 3.258%V2O5,52.880%SiO2 and 16.140%Al2...Extraction of vanadium from black shale was attempted in pressure acid leaching.The chemical components of the sample obtained from Guizhou Province of China show that it contains 3.258%V2O5,52.880%SiO2 and 16.140%Al2O3.Phase analyses of vanadium indicates vanadium mainly exists in the free oxide and mica.Vanadium contents in the two phases are 18%and 53%, respectively.The contents of V3 +,V 4+and V 5+are almost equal.Under the optimum parameters of one-step leaching(reaction time of 3 h,sulfuric addition of 25%,temperature of 150℃,liquid to solid ratio of 1.2 mL/g,catalyst(FeSO4)addition of 5%and size of 85%particle 0.074 mm),about 77%of vanadium is recovered.After two-step countercurrent leaching,the leach recovery of vanadium can reach above 90%.Air replacing oxygen is completely feasible.The impurity metals can dissolve into solution in different degrees.展开更多
The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-...The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-supported catalyst affect of MWD of PE produced in broad range:Vanadium-magnesium catalyst(VMC)produce PE with broad and bimodal MWD(M_w/M_n=14-21).MWD of PE,produced over titanium-magnesium catalyst(TMC)is narrow or medium depending on Ti content in the catalyst(M_w/M_n=3.1-4.8).The oxidation ...展开更多
A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roas...A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.展开更多
基金financially supported by the High-degree Talent Introduction Program of Guangdong Academy of Sciences(No.2017GDASCX-0841)the Science and Technology Program of Guangzhou(No.201607020021)+2 种基金the National Natural Science Foundation of China(No.51304055)the Innovative Platform Construction Program of Guangdong Academy of Sciences(No.2017GDASCX-0109)the Pearl River Nova Program of Guangzhou(No.201806010016)
文摘The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.
文摘The addition of distillation residues to the FCC feedstock leads to increased vanadiumloading on catalyst and the problems in catalyst deactivation.The deactivation process is related tothe destructive attack on the zeolite crystallite by V<sub>2</sub>O<sub>5</sub>.Formation of low melting pointV<sub>2</sub>O<sub>5</sub>-USY-Na<sub>2</sub>O phases accelerates the diffusion of vanadium through the catalyst.A proposedmechanism,based on accelerated dealumination,is shown in the paper.Comparative vanadiumtrapping performances have been tested for FCC catalysts and the crystalline ABO<sub>3</sub> as an effectivevanadium trap is demonstrated in laboratory tests.
基金supported by the Science and Technology Plan Project of Hebei Province of China(16273703D)the Fundamental Research Funds for the Central Universities(2015ZD24,2017XS123)~~
文摘Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.
基金The project is supported by the National Natural Science Foundation of China (No.20176065)
文摘Radio frequency plasma was used to prepare a vanadium catalyst. The resultsshowed that activating time of the catalyst could be shortened quickly and the catalytic activitywas improved to some extent with the use of plasma. Catalyst Ls-9 was prepared under an optimalcondition of 40 W discharge power, 10 min discharge time and 8 Pa gas pressure. The catalyticactivity was up to 54.7% at 410℃, which was 2.2% higher than that of the Ls-8 catalyst. Only 10 minwas needed to activate the catalyst with plasma, which was 1/9 of the traditional calcination time.For Ls-9, both the endothermic as well as the exothermic peaks detected by differential thermalanalysis shifted to higher temperatures obviously, indicating that its crystal phase could melteasily. There existed an apparent endothermic peak at 283℃. SEM photographs showed a uniform sizedistribution. It is inferred that the quadrivalent vanadium compound may exist mainly in the form ofVOSO_4.
文摘Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its vanadium concentration. Most of these catalysts are usually supported on alumina containing a variable percentage of elements such as nickel or molybdenum. Hence these catalysts contain environmentally critical, and economically valuable metals such as molyb denum, vanadium, and, nickel. In this paper, a spent HDS catalyst was treated with caustic soda solution. Parameters such as temperature, time, and NaOH solution concentration have been studied thoroughly, in order to settle the appropriate conditions for the maximum recovery of molybdenum and vanadium. Under the best leaching conditions (20 %w NaOH, room temperature, 2 h) about 95% recovery of Mo and V was achieved, and the recovery of nickel obtained was of 99% in the form of NiAlO4.
文摘A nano-structured iron catalyst for syngas conversion to hydrocarbons in Fischer-Tropsch synthesis(FTS) was prepared by micro-emulsion method.Compositions of bulk iron phase and phase transformations of carbonaceous species during catalyst deactivation in FTS reaction were characterized by temperature-programmed surface reaction with hydrogen(TPSR-H 2 ),and XRD techniques.Many carbonaceous species on surface and bulk of the nano-structured iron catalysts were completely identified by combined TPSR-H 2 and XRD spectra and which were compared with those recorded on conventional co-precipitated iron catalyst.The results reveal that the catalyst deactivation results from the formation of inactive carbide phases and surface carbonaceous species like graphite,and it will be increased when the particle size of iron oxides was reduced in FTS iron catalyst.
基金Project(20176065)supported by the National Natural Science Foundation of China.
文摘The effect of ultrasonic cavitations on the activity of vanadium catalysts atlow temperatures for the oxidation of sulfur dioxide, in which refined carbonized mother liquor hadbeen added, was investigated. Twenty minutes were needed to produce obvious cavitations when thecatalyst raw material was treated in the 50 W ultrasonic generator. However, only 10 minutes wouldbe needed in a 150 W ultrasonic generator. The higher the temperature of the wet material, the lesstime was needed to produce cavitations, and the optimal temperature was 60℃. The water content inthe wet material mainly affected the quantity of cavitations. Ls-8 catalyst was prepared usingultrasonic. Its activity for conversion of SO_2 reached to 52.5% at 410℃ and 4.2% at 350℃. Thedifferential thermal analyses indicate that both endothermic peaks and exothermic peaks noticeablyshifted forward compared with Ls catalyst prepared without ultrasonic, and SEM results show auniform pore size distribution for Ls-8 catalyst.
基金supported by the Youth Fund Project(2002B25)of Sichuan Department of Educationthe Scientific Research Foundation for Doctor from Yibin College of China(2010B12)
文摘A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.
基金Supported by the National Natural Science Foundation of China (No. 29792073-3).
文摘The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response technique. The reaction intermediates, buterie and furan, were found in the reaction effluent under near industrial feed condition (3% butane+15%O2), while dihydrofuran was detected at high butane concentration (12% butane, 5%O2). Some intermediates of MA decomposition were also identified. Detection of these intermediates shows that the vanadium phosphorus oxides are able to dehydrogenate butane to butene, and butene further to form MA. Based on these observations, a modified scheme of reaction network is proposed. The transient experiments show that butane in the gas phase may directly react with oxygen both on the surface and from the metal oxide lattice, without a proceeding adsorption step. Gas phase oxygen can be adsorbed and transformed to surface lattice oxygen but it can not participate in selective oxidation. Adsorbed oxygen leads to deep oxidation, while lattice oxygen leads to selective oxidation.
文摘Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO).
基金the vice-president's office for research affairs of Shahrood University of Technology for the financial support of this work
文摘Boehmite nanoparticles with a high surface area and a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support vanadium‐oxo‐sulfate and molybdenum hexacarbonyl complexes. These supported catalysts were then characterized by Fou‐rier‐transform infrared spectroscopy, powder X‐ray diffraction, thermogravimetry and differential thermal analysis, X‐ray‐photoelectron spectroscopy, elemental analysis, inductively coupled plasma, and transmission electron microscopy techniques. The catalysts were subsequently used for the epoxidation of cis‐cyclooctene, and the experimental procedures were optimized. The progress of the reactions was investigated by gas‐liquid chromatography. Recycling experiments revealed that these nanocatalysts could be repeatedly used several times for a nearly complete epoxidation of cis‐cyclooctene. The optimized experimental conditions were also used successfully for the epoxida‐tion of some other substituted alkenes.
文摘The NWS-1 vanadium catalyst for converting wet gas is a novel dedicated vanadium catalyst independently developed by the Research Institute of SINOPEC Nanjing Chemical Industry Co., Ltd.This catalyst can be used to treat the sour gas stream discharged from the power plants, the refinery, the petrochemical enterprise, the smeltery, the coking units and coal chemical plants, with the sulfur recovery rate reaching over 99% to meet the latest national environmentally benign emission standard.
文摘Phase composition and surface characterization of vanadium-phosphorus catalysts containing rare earth elements were investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), NH3-temperature programmed desorption (NH3-TPD) and so on. The catalysts were used for the selective oxidation of n-butane to maleic anhydride. Catalytic performance has been carried out in a fixed-bed reactor. Experimental results showed that yield of maleic anhydride was enhanced by 4%~15% over vanadium-phosphorus catalysts by the addition of rare earth elements. Rare earth elements as promotors played the role of increasing surface acidity of the catalysts.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.U20B2018,U21B2086,11972087)。
文摘A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.
文摘A novel vanadium oxide catalyst supported on active carbon was prepared by an incipient wetness impregnation method, and the precursor was obtained from oxalic acid aqueous solutions of NH4VO3. The catalyst was applied liquid phase oxidation of glyoxal to glyoxylic acid. It was found that V2O5/C catalyst exhibited obvious activity for glyoxal oxidation. Glyoxylic acid could be obtained without pH regulation during the reaction. By using this catalyst, the conversion of glyoxal and the yield of glyoxalic acid were 29.2% and 13.6%, respectively at 313 K and oxygen flow 0.1 L/rain after reaction for 10 h.
基金financially supported by the Natural Science Foundation of China(91545117)the National Basic Research Program of China(Grant No.2012CB215001)Scientific Research Foundation of China University of Petroleum Beijing(Grant Nos.2462013YJRC016)
基金Supported by the Ministry of Science and Technology of China(No. 2005CB221408)the National Natural Science Founda-tion of China(Nos. 20423002, 20571061)Key Scientific Project of Fujian Province, China(No. 2005HZ01-3)
文摘Precursor decomposition was used for the preparation of VTeO/SBA-15 catalyst for the selective oxidation of propane to acrolein. The catalyst shows a better performance compared with those prepared by conventional impregnant method. A yield of 9.3% of acrolein was achieved with 2% V loadings at 500 ℃. XRD, N2-adsorption, H2-TPR, Py-IR and XPS measurements were used to unclose the relationship between the structure and performance of the catalyst.
基金Project(2006AA06Z130)supported by the Hi-tech Research and Development Program of ChinaProject(2007GA010)supported by Yunnan Provincial Science and Technology Agency
文摘Extraction of vanadium from black shale was attempted in pressure acid leaching.The chemical components of the sample obtained from Guizhou Province of China show that it contains 3.258%V2O5,52.880%SiO2 and 16.140%Al2O3.Phase analyses of vanadium indicates vanadium mainly exists in the free oxide and mica.Vanadium contents in the two phases are 18%and 53%, respectively.The contents of V3 +,V 4+and V 5+are almost equal.Under the optimum parameters of one-step leaching(reaction time of 3 h,sulfuric addition of 25%,temperature of 150℃,liquid to solid ratio of 1.2 mL/g,catalyst(FeSO4)addition of 5%and size of 85%particle 0.074 mm),about 77%of vanadium is recovered.After two-step countercurrent leaching,the leach recovery of vanadium can reach above 90%.Air replacing oxygen is completely feasible.The impurity metals can dissolve into solution in different degrees.
文摘The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-supported catalyst affect of MWD of PE produced in broad range:Vanadium-magnesium catalyst(VMC)produce PE with broad and bimodal MWD(M_w/M_n=14-21).MWD of PE,produced over titanium-magnesium catalyst(TMC)is narrow or medium depending on Ti content in the catalyst(M_w/M_n=3.1-4.8).The oxidation ...
基金Project(2003 UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province
文摘A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.