Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into ...Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications. In this investigation regular γ- and nano-structured (N-S) alumina as well as CNTs-covered regular γ- and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru. The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS. γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material. Catalyst evaluations indicated that N-S-Al2O3 was superior to regular γ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity. These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view. CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation. Furthermore, TPR analysis indicated that the cobalt aluminate phase, which is responsible for the permanent deactivation of alumina supported Co-based catalysts, did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient ...The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient reduction protocol for converting aqueous FAL to FOL. A single phase rutile TiO2 support with a gold catalyst (Au/TiO2‐R) that used CO/H2O as the hydrogen source catalyze this reduction efficiently under mild conditions. By eliminating the consumption of fossil fuel‐derived H2, our pro‐cess has the benefit afforded by using CO as a convenient and cost competitive reducing reagent.展开更多
Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentar...Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.展开更多
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron mic...Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.展开更多
Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐p...Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.展开更多
An Au/ceria(0.44%, mass fraction) catalyst containing gold ions was prepared by a modified deposition precipitation method, and the evolution of gold ions in the catalyst and its influence on the catalysis of CO oxi...An Au/ceria(0.44%, mass fraction) catalyst containing gold ions was prepared by a modified deposition precipitation method, and the evolution of gold ions in the catalyst and its influence on the catalysis of CO oxidation were investigated. It was found that the as-prepared catalyst containing gold ions with high valence could fully oxidize CO at -10 ℃ initially but was deactivated gradually at low temperatures during the reaction with CO or treatment by unpurified air. The deactivation of the catalyst during CO oxidation or treatment of it by unpurified air was independent and progressive at low temperatures while the activity of the catalyst at relatively high temperatures was maintained well. During the reaction with CO or treatment by unpurified air, the XPS results indicate that gold species evolved from high valence to low valence and the diffuse reflectance UV-Vis spectra show that high valence gold was reduced to charged gold clusters, gold clusters grew to small gold crystals and small gold crystals grew to large gold particles. Accordingly, the high valence gold corresponded to the activity at low temperatures and the metallic gold was active and relatively stable at high temperatures. The turnover frequencies(TOF) of the catalysts treated by different methods at 273 K decreased with the evolution of gold species from high valence to low valence, no maximum of TOF was observed although gold particles in the catalyst attained to about 2-3 nm during the treatment. An Au/ceria catalyst with a gold load of 0.87% (mass fraction) maintained a good activity for CO oxidation within 18 h at room temperature. The catalysts were characterized via transmitted electronic microscopy(TEM), inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray diffraction(XRD) and BET specific surface area and UV-Vis DRS as well.展开更多
Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Th...Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.展开更多
Silica supported gold nanoparticles were synthesized and promoted by lanthanum oxide as dopant. The influences of LaOand silica textural structure on the gold dispersion, formation of active species, crystalline compo...Silica supported gold nanoparticles were synthesized and promoted by lanthanum oxide as dopant. The influences of LaOand silica textural structure on the gold dispersion, formation of active species, crystalline composition and the reacting role of dopants were studied in detail. The characterization results suggested that the dispersion of gold nanoparticles depended on the textural structure of silica without lanthanum oxide doping where small mesopores are more preferable to disperse gold nanoparticles. The addition of lanthanum oxide largely increased the dispersion of gold nanoparticles and oxygen active sites independent of the textural structure of silica support. The interaction between lanthanum oxide and silica enhanced by the synergy facilitated the release of oxygen vacancies and transition of active oxygen species. In addition, the chemical properties were greatly changed after lanthanum oxide addition which was only inconspicuously impacted by the initial textural structure of silica supports, shedding light on the further design of economic gold catalyst based on simple synthesis method.展开更多
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and pr...A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.展开更多
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id...The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.展开更多
The selective oxidation of cyclohexene to 2-cyclohexene-1-ol and 2-cyclohexene-1-one has been investi-gated over Au/HNTs (HNTs: halloysite nanotubes) catalysts with molecular oxygen in a solvent-free system. The catal...The selective oxidation of cyclohexene to 2-cyclohexene-1-ol and 2-cyclohexene-1-one has been investi-gated over Au/HNTs (HNTs: halloysite nanotubes) catalysts with molecular oxygen in a solvent-free system. The catalysts were prepared by deposition precipitation method and characterized by ICP-AES, TEM and XRD. The results show that the catalytic performance of Au/HNTs is quite well and the catalytic activity over recycled catalyst remains highly. Moreover, the nano-size effect of gold is also reported for the reaction.展开更多
Gold catalysis had been considered a highly efficient candidate for heterogeneous catalysis.It is well established that reducible-material-supported Au NPs are more reactive than the unreducible materials,unless speci...Gold catalysis had been considered a highly efficient candidate for heterogeneous catalysis.It is well established that reducible-material-supported Au NPs are more reactive than the unreducible materials,unless specific modifications are carried out.However,unreducible materials such as carbon materials,silica,and alumina have particular advantages,including the easily controlled surface property,adjustable microscopic structure,earth-abundant reserves,and facile industrial manufacture.New strategies,influences,and mechanisms of modification to enhance the catalytic performance and thermal stability of unreducible-material-supported gold catalysts are among the most attractive research topics in gold catalysis.However,to the best of our knowledge,reports and reviews focused on unreducible-material-supported gold catalysts are lacking.Herein,the above concept will be thoroughly discussed regarding several typical unreducible supports,including the commonly used silica,alumina,carbon materials,and hydroxyapatite.The currently prevailing modification strategies will be summarized in detail from the aspects of theoretical conceptualization and practical methodology,including the ingenious synthesis method for catalyst with a specific structure,the currently prosperous electrostatic adsorption,colloid immobilization,and the applicative thermal gaseous treatment.The influences of physical and chemical modifications on the surface chemistry,electronic structure,interaction/synergy between Au-support/promoter,catalyst morphology and water precipitation will be also summarized.It is assumed that the review will shed light on significant studies on unreducible support in gold catalysis with the purpose of catalytic promotion and the promotion of the potential industrial demands in advance.Furthermore,the review will provide new insights into unreducible supports that can be potentially applied in gold catalysis.展开更多
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo...Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.展开更多
High active and stable gold catalysts supported on crystalline Fe203 and CeO2/Fe2O3 were prepared via the deposition-precipitation method. The catalyst with a Au load of 1.0% calcined at 180 ℃ showed a CO conversion ...High active and stable gold catalysts supported on crystalline Fe203 and CeO2/Fe2O3 were prepared via the deposition-precipitation method. The catalyst with a Au load of 1.0% calcined at 180 ℃ showed a CO conversion of 100% at -8.9℃, while Au/CeO2/Fe2O3 converted CO completely at -16.1 ℃. Even having been calcined at 500 ℃, Au/Fe2O3 still exhibited significant catalytic activity, achieving full conversion of CO at 61.6℃. The catalyst with a low Au load of 0.5% could convert CO completely at room temperature and kept the activity unchanged for at least 150 h. N2 adsorption-desorption measurements show that the crystalline supports possessed a high specific surface area of about 200 m2/g. Characterizations of X-ray diffraction and transmission electron microscopy indicate that gold species were highly dispersed as nano or sub-nano particles on the supports. Even after the catalyst was calcined at 500 ℃, the Au particles remained in a nano-size of about 6--10 nm. X-ray photoelectron spectra reveal that the supported Au existed in metallic state Au0. The modification of Au/Fe2O3 by CeO2 proved to be beneficial to the inhibition of crystallization of Fe2O3 and the stabilization of gold particles in dispersed state, consequently promoting catalytic activity.展开更多
With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is as...With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.展开更多
The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a ...The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-lmin-i), and good reusability of GNTs/CHNTs.展开更多
The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides wi...The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.展开更多
Sealed-off carbon dioxide lasers encounter problem of dissociation of CO2, Which causes the output power to fall. Reformation of CO2 is therefore essential for long life CO2 lasers. Au/Fe2O3 and Au/NiFe2O4 are promis...Sealed-off carbon dioxide lasers encounter problem of dissociation of CO2, Which causes the output power to fall. Reformation of CO2 is therefore essential for long life CO2 lasers. Au/Fe2O3 and Au/NiFe2O4 are promising candidates for this application.展开更多
Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) ...Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g·s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g·s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability.展开更多
基金supported by the Research and Technology Directorate of National Iranian Oil Company
文摘Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications. In this investigation regular γ- and nano-structured (N-S) alumina as well as CNTs-covered regular γ- and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru. The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS. γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material. Catalyst evaluations indicated that N-S-Al2O3 was superior to regular γ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity. These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view. CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation. Furthermore, TPR analysis indicated that the cobalt aluminate phase, which is responsible for the permanent deactivation of alumina supported Co-based catalysts, did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金supported by the National Natural Science Foundation of China (21273044, 21473035, 91545108)the Research Fund for the Doctoral Program of Higher Education (2012007000011)+2 种基金SINOPEC (X514005)Science & Technology Commission of Shanghai Municipality (08DZ2270500)the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-15C02)~~
文摘The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient reduction protocol for converting aqueous FAL to FOL. A single phase rutile TiO2 support with a gold catalyst (Au/TiO2‐R) that used CO/H2O as the hydrogen source catalyze this reduction efficiently under mild conditions. By eliminating the consumption of fossil fuel‐derived H2, our pro‐cess has the benefit afforded by using CO as a convenient and cost competitive reducing reagent.
基金the National Natural Science Foundation of China(20825310,20973011)the National Basic Research Program of China(973 Program,2011CB201400,2011CB808700)
文摘Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.
基金The Natural Science Foundation of China (No.20273057,20473070).
文摘Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.
基金supported by the National Natural Science Foundation of China (21373259, 21301107)the Hundred Talents Project of the Chinese Academy of Sciences, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030102)+2 种基金the Open Funding from Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciencesthe Fundamental Research Fund-ing of Shandong University (2014JC005)the Taishan Scholar Project of Shandong Province (China)~~
文摘Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.
基金Supported by the National Natural Science Foundation of China(No.20563003)the Inner Mongolia Education Depart-ment Fund(No.NJZY07013)
文摘An Au/ceria(0.44%, mass fraction) catalyst containing gold ions was prepared by a modified deposition precipitation method, and the evolution of gold ions in the catalyst and its influence on the catalysis of CO oxidation were investigated. It was found that the as-prepared catalyst containing gold ions with high valence could fully oxidize CO at -10 ℃ initially but was deactivated gradually at low temperatures during the reaction with CO or treatment by unpurified air. The deactivation of the catalyst during CO oxidation or treatment of it by unpurified air was independent and progressive at low temperatures while the activity of the catalyst at relatively high temperatures was maintained well. During the reaction with CO or treatment by unpurified air, the XPS results indicate that gold species evolved from high valence to low valence and the diffuse reflectance UV-Vis spectra show that high valence gold was reduced to charged gold clusters, gold clusters grew to small gold crystals and small gold crystals grew to large gold particles. Accordingly, the high valence gold corresponded to the activity at low temperatures and the metallic gold was active and relatively stable at high temperatures. The turnover frequencies(TOF) of the catalysts treated by different methods at 273 K decreased with the evolution of gold species from high valence to low valence, no maximum of TOF was observed although gold particles in the catalyst attained to about 2-3 nm during the treatment. An Au/ceria catalyst with a gold load of 0.87% (mass fraction) maintained a good activity for CO oxidation within 18 h at room temperature. The catalysts were characterized via transmitted electronic microscopy(TEM), inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray diffraction(XRD) and BET specific surface area and UV-Vis DRS as well.
基金financially supported by the Key Program of the Chinese Academy of Science(grant no.KGZD-EW-T08)the National Basic Research Program of China(973 Program,2012CB215500)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(grant no.XDA09030104)
文摘Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.
基金supported by the foundation of programme from Education Department of Sichuan (15ZA0303)New Century Excellent Talent Project of China (NCET-05-0783)
文摘Silica supported gold nanoparticles were synthesized and promoted by lanthanum oxide as dopant. The influences of LaOand silica textural structure on the gold dispersion, formation of active species, crystalline composition and the reacting role of dopants were studied in detail. The characterization results suggested that the dispersion of gold nanoparticles depended on the textural structure of silica without lanthanum oxide doping where small mesopores are more preferable to disperse gold nanoparticles. The addition of lanthanum oxide largely increased the dispersion of gold nanoparticles and oxygen active sites independent of the textural structure of silica support. The interaction between lanthanum oxide and silica enhanced by the synergy facilitated the release of oxygen vacancies and transition of active oxygen species. In addition, the chemical properties were greatly changed after lanthanum oxide addition which was only inconspicuously impacted by the initial textural structure of silica supports, shedding light on the further design of economic gold catalyst based on simple synthesis method.
基金supported by the Youth Fund Project(2002B25)of Sichuan Department of Educationthe Scientific Research Foundation for Doctor from Yibin College of China(2010B12)
文摘A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.
文摘The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.
文摘The selective oxidation of cyclohexene to 2-cyclohexene-1-ol and 2-cyclohexene-1-one has been investi-gated over Au/HNTs (HNTs: halloysite nanotubes) catalysts with molecular oxygen in a solvent-free system. The catalysts were prepared by deposition precipitation method and characterized by ICP-AES, TEM and XRD. The results show that the catalytic performance of Au/HNTs is quite well and the catalytic activity over recycled catalyst remains highly. Moreover, the nano-size effect of gold is also reported for the reaction.
文摘Gold catalysis had been considered a highly efficient candidate for heterogeneous catalysis.It is well established that reducible-material-supported Au NPs are more reactive than the unreducible materials,unless specific modifications are carried out.However,unreducible materials such as carbon materials,silica,and alumina have particular advantages,including the easily controlled surface property,adjustable microscopic structure,earth-abundant reserves,and facile industrial manufacture.New strategies,influences,and mechanisms of modification to enhance the catalytic performance and thermal stability of unreducible-material-supported gold catalysts are among the most attractive research topics in gold catalysis.However,to the best of our knowledge,reports and reviews focused on unreducible-material-supported gold catalysts are lacking.Herein,the above concept will be thoroughly discussed regarding several typical unreducible supports,including the commonly used silica,alumina,carbon materials,and hydroxyapatite.The currently prevailing modification strategies will be summarized in detail from the aspects of theoretical conceptualization and practical methodology,including the ingenious synthesis method for catalyst with a specific structure,the currently prosperous electrostatic adsorption,colloid immobilization,and the applicative thermal gaseous treatment.The influences of physical and chemical modifications on the surface chemistry,electronic structure,interaction/synergy between Au-support/promoter,catalyst morphology and water precipitation will be also summarized.It is assumed that the review will shed light on significant studies on unreducible support in gold catalysis with the purpose of catalytic promotion and the promotion of the potential industrial demands in advance.Furthermore,the review will provide new insights into unreducible supports that can be potentially applied in gold catalysis.
基金Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050269)the Fundamental Research Funds for the Central Universities(226-2023-00085,226-2023-00057).
文摘Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.
基金Supported by the Henkel Professorship of Tongji University,China
文摘High active and stable gold catalysts supported on crystalline Fe203 and CeO2/Fe2O3 were prepared via the deposition-precipitation method. The catalyst with a Au load of 1.0% calcined at 180 ℃ showed a CO conversion of 100% at -8.9℃, while Au/CeO2/Fe2O3 converted CO completely at -16.1 ℃. Even having been calcined at 500 ℃, Au/Fe2O3 still exhibited significant catalytic activity, achieving full conversion of CO at 61.6℃. The catalyst with a low Au load of 0.5% could convert CO completely at room temperature and kept the activity unchanged for at least 150 h. N2 adsorption-desorption measurements show that the crystalline supports possessed a high specific surface area of about 200 m2/g. Characterizations of X-ray diffraction and transmission electron microscopy indicate that gold species were highly dispersed as nano or sub-nano particles on the supports. Even after the catalyst was calcined at 500 ℃, the Au particles remained in a nano-size of about 6--10 nm. X-ray photoelectron spectra reveal that the supported Au existed in metallic state Au0. The modification of Au/Fe2O3 by CeO2 proved to be beneficial to the inhibition of crystallization of Fe2O3 and the stabilization of gold particles in dispersed state, consequently promoting catalytic activity.
文摘With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.
文摘The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-lmin-i), and good reusability of GNTs/CHNTs.
基金Universiti Kebangsaan Malaysia for the financial support
文摘The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.
文摘Sealed-off carbon dioxide lasers encounter problem of dissociation of CO2, Which causes the output power to fall. Reformation of CO2 is therefore essential for long life CO2 lasers. Au/Fe2O3 and Au/NiFe2O4 are promising candidates for this application.
基金supported by the National Natural Science Foundation of China(21373037,21577013)China Postdoctoral Science Foundation(2014M560201)the Fundamental Research Funds for the Central Universities(DUT15TD49,DUT16ZD224)~~
文摘Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g·s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g·s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability.