期刊文献+
共找到6,318篇文章
< 1 2 250 >
每页显示 20 50 100
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
1
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 composite Panels Tannins reinforced Sugar Cane Molasses Building Insulation Mechanical and Thermal Properties
下载PDF
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
2
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
Characteristic of Fresh and Harden Properties of Polyvinyl Alcohol Fibre Reinforced Alkali Activated Composite
3
作者 Yiguang Wang Zhe Zhang Xun Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1321-1337,共17页
Fibre can enhance the mechanical properties of cement-based composites,but fibre also degrades their workability.However,the quantitative effects of fiber content and length-diameter ratio on alkali-activated material... Fibre can enhance the mechanical properties of cement-based composites,but fibre also degrades their workability.However,the quantitative effects of fiber content and length-diameter ratio on alkali-activated materials are still unclear.Various aspect ratio,volume fraction of polyvinyl alcohol fibre(PVAF),and various water-binder ratio were employed to prepare a total of 26 groups of fibre reinforced alkali-activated composite(FRAAC).The influence of PVAF fibre factor(product of fiber volume fraction and length-diameter ratio)on flowability,compactness,strength,and crack fractal dimension of FRAAC was researched.The influence of water-binder ratio on the plastic viscosity of FRAAC was more significant than that on the yield stress.When fibre factor was lower than critical value of 150,the influence of fibres could be overlooked.The reason was that the space between fibres was distant,so the flowability of FRAAC was not impacted by PVAF.At this time,fibres were challenging to restrict the cracks in matrix and increase their mechanical properties.When fibre factor was higher than critical value 150 and lower than density packing value 450,the flexural strength,compressive strength and crack fractal dimension of FRAAC were considerably enhanced,and the FRAAC could still flow easily under dead weight.When fibre factor were above 450,noteworthy fibre balling considerably decreased the flowability,leading to poor solidity and reduced compressive strength.Hence,the ideal content of PVAF in alkali activated composite is between 150/(l/d)and 450/(l/d). 展开更多
关键词 Alkali-activated composite fibre reinforced composite fibre factor FLOWABILITY strength fractal dimension
下载PDF
Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review
4
作者 Brett Holmberg Liang Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1474-1489,共16页
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou... The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology. 展开更多
关键词 cemented paste backfill cementitious composites interfacial transition zone fiber reinforcement MULTIPHYSICS induced curing pressure
下载PDF
Preparation and Investigation of Mechanical and Physical Properties of Flax/Glass Fabric Reinforced Polymer Hybrid Composites
5
作者 Sayed Hasan Mahmud Md. Washim Akram +1 位作者 Md. Fuad Ahmed Md. Atik Bin Habib 《Journal of Flow Control, Measurement & Visualization》 2023年第3期165-182,共18页
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that... Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration. 展开更多
关键词 Flax-Glass Fabric reinforced composites Mechanical Properties SEM TGA Polyester Resin
下载PDF
Preparation and Investigation of Mechanical and Physical Properties of Flax/Glass Fabric Reinforced Polymer Hybrid Composites
6
作者 Sayed Hasan Mahmud Md. Washim Akram +1 位作者 Md. Fuad Ahmed Md. Atik Bin Habib 《Journal of Textile Science and Technology》 2023年第3期165-182,共18页
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that... Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration. 展开更多
关键词 Flax-Glass Fabric reinforced composites Mechanical Properties SEM TGA Polyester Resin
下载PDF
Effect of Silane Coupling Agent Concentration on Interfacial Properties of Basalt Fiber Reinforced Composites
7
作者 Takao Ota 《材料科学与工程(中英文A版)》 2023年第2期36-42,共7页
The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composi... The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials. 展开更多
关键词 Natural MINERAL FIBER reinforced composites BASALT FIBER SILANE coupling agent interface fiber/matrix BOND
下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure
8
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
下载PDF
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview
9
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad BIOcompositeS green composite mechanical properties natural reinforcement WASTE
下载PDF
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
10
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization Strengthening material Blast resistance Masonry wall reinforced AAC panel Plain concrete slab
下载PDF
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks
11
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
下载PDF
A review on machinability of carbon fiber reinforced polymer(CFRP)and glass fiber reinforced polymer(GFRP)composite materials 被引量:35
12
作者 Meltem Altin Karatas Hasan Gokkaya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期318-326,共9页
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s... Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models. 展开更多
关键词 composite MATERIALS Fiber reinforced polymer composite MATERIALS CFRP GFRP Machining Wear Surface damage
下载PDF
Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite 被引量:4
13
作者 Zhang Peng Zeng Shaolian +1 位作者 Zhang Zhiguo Li Wei 《China Foundry》 SCIE CAS 2013年第6期374-379,共6页
In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure ... In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry(EDS), electron probe microanalysis(EPMA), scanning electron microscope(SEM) and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as(Cr, W, Fe)23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA(69.5 HRC) is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material. 展开更多
关键词 PARTICLE reinforcement INFILTRATION CASTING composite material high Cr cast IRON HARDNESS
下载PDF
Preparation and Mechanical Properties of-SiC Nanoparticle Reinforced Aluminum Matrix Composite by a Multi-step Powder Metallurgy Process 被引量:5
14
作者 WANG Linong WU Hao +2 位作者 WU Xingping CHEN Minghai LIU Ning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1059-1063,共5页
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur... β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite. 展开更多
关键词 Β-SIC NANOPARTICLES particulate reinforced Al matrix composite powder metallurgy
下载PDF
Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core–shell-structured Ti/Al3Ti 被引量:3
15
作者 Li Zhang Bao-lin Wu Yu-lin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1431-1437,共7页
An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate ... An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core–shell-structured reinforcement, which is mainly composed of Al_3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al_3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al–Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process. 展开更多
关键词 microstructure aluminum-based composites Ti/Al3Ti reinforcEMENTS mechanical properties
下载PDF
The properties of flax fiber reinforced wood flour/high density polyethylene composites 被引量:3
16
作者 Jingfa Zhang Haigang Wang +1 位作者 Rongxian Ou Qingwen Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期524-531,共8页
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ... Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material. 展开更多
关键词 Wood-plastic composites Flax fiber reinforcEMENT PROCESSING Mechanical property Creep resistance
下载PDF
STRAIN REGULARITY IN REINFORCERS OF SHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION 被引量:2
17
作者 王迺鹏 刘秋云 刘晓宇 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期204-210,共7页
Based on the study of strain distribution in short fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root mean square strain of reinforcers to t... Based on the study of strain distribution in short fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root mean square strain of reinforcers to the macro linear strain along the same direction. Quantitative relation between λ and microstructure parameters of the composite is obtained. As an example of applying and verifying λ , the stress strain curve of [AlBO]w/Al composite under tensile loading is predicted and favorably compared with experiments. By using λ , the stiffness modulus of the composite with arbitrary reinforcer orientation under any loading condition is predicted from the microstructure parameters of material. 展开更多
关键词 short-fiber/whisker reinforced composite STRAIN distribution STIFFNESS prediction
下载PDF
PREDICTION OF MECHANICAL PROPERTY OF WHISKER REINFORCED METAL MATRIX COMPOSITE: PART-II. VERIFICATION & APPLICATION 被引量:3
18
作者 刘晓宇 刘秋云 梁乃刚 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期188-192,共5页
The present paper continues the discussion in Part I. Model and Formulation. Based on the theory proposed in Part I, the formulae predicting stiffness moduli of the composites in some typical cases of whisker orientat... The present paper continues the discussion in Part I. Model and Formulation. Based on the theory proposed in Part I, the formulae predicting stiffness moduli of the composites in some typical cases of whisker orientations and loading conditions are derived and compared with theoretical representatives in literatures, experimental measurement and commonly used empirical formulae. It seems that (1) with whisker reinforcing and matrix hardening considered, the present prediction is in well agreement with the experimental measurement; (2) the present theory can predict accurate moduli with the proper pre calculated parameters; (3) the upper bound and lower bound of the present theory are just the predictions of equal strain theory and equal stress theory; (4) the present theory provides a physical explanation and theoretical base for the present commonly used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for modulus prediction of practical engineering composite in accuracy and simplicity. [WT5”HZ] 展开更多
关键词 whisker/short fiber reinforced composite modulus prediction ANISOTROPY
下载PDF
Mechanical Properties of Mo Fiber-reinforced Resin Mineral Composites with Different Mass Ratio of Resin and Hardener 被引量:2
19
作者 张超 张进生 +1 位作者 REN Xiuhua ZHANG Jianhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期383-390,共8页
Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanica... Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well. 展开更多
关键词 MO FIBER RESIN mineral composite(RMC) reinforcing effect compression STRENGTH flexural STRENGTH bonding STRENGTH
下载PDF
Effects of characteristic inhomogeneity of bamboo culm nodes on mechanical properties of bamboo fiber reinforced composite 被引量:3
20
作者 Jinqiu Qi Jiulong Xie +1 位作者 Wenji Yu Simin Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第4期1057-1060,共4页
Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fib... Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs. 展开更多
关键词 Bamboo fiber reinforced composite - Culmnode Mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部