The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications. A combined theory/experimental approach for de- termi...The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications. A combined theory/experimental approach for de- termining the resistivity and the density of interface states of the bending silicon nanobridges is presented. The suspended p-type silicon nanobridge test structures were fabricated from silicon-on-insulator wafers by using a standard CMOS lithography and anisotropic wet etching release process. After that, we measured the resistance of a set of silicon nanobridges versus their length and width under different bias voltages. In conjunction with a theoretical model, we have finally extracted both the interface state density of and resistivity suspended silicon nanobridges under different bending deformations, and found that the resistivity of silicon nanobridges without bending was 9.45 mΩ.cm and the corresponding interface charge density was around 1.7445 × 10^13 cm-2. The bending deformation due to the bias voltage slightly changed the resistivity of the silicon nanobridge, however, it significantly changed the distribution of interface state charges, which strongly depends on the intensity of the stress induced by bending deformation.展开更多
Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb fi lms using low-temperature molecular beam epitaxy and focus ion beam microfabricat...Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb fi lms using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques.We observed novel magnetoresistance oscillations below the superconducting transition temperature(TC)of the bridges.The oscillations which were not seen in the crystalline Pb fi lmsmay originate from the inhomogeneity of superconductivity induced by the applied magnetic fi elds on approaching the normal state,or the degradation of fi lm quality by thermal evolution.展开更多
This paper analyzes nanobridge tests with consideration of adhesive contact deformation, which occurs between a probe tip and a tested nanobeam, and deformation of a substrate or template that supports the tested nano...This paper analyzes nanobridge tests with consideration of adhesive contact deformation, which occurs between a probe tip and a tested nanobeam, and deformation of a substrate or template that supports the tested nanobeam.Analytical displacement-load relation, including adhesive contact deformation and substrate deformation, is presented here for small deformation of bending.The analytic results are confirmed by finite element analysis.If adhesive contact deformation and substrate deformation are not considered in the analysis of nanobridge test data, they might lead to lower values of Young's modulus of tested nanobeams.展开更多
基金supported by the National Natural Science Foundation of China(No.41075026)the Natural Science Foundation of Jiangsu Province (No.BK2012460)+2 种基金the Special Fund for Meteorology Research in the Public Interest(No.GYHY200906037)the Universities Natural Science Research Project of Jiangsu Province(No.12KJB510011)the Priority Academic Program Development of Sensor Networks and Modern Meteorological Equipment of Jiangsu Higher Education Institutions
文摘The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications. A combined theory/experimental approach for de- termining the resistivity and the density of interface states of the bending silicon nanobridges is presented. The suspended p-type silicon nanobridge test structures were fabricated from silicon-on-insulator wafers by using a standard CMOS lithography and anisotropic wet etching release process. After that, we measured the resistance of a set of silicon nanobridges versus their length and width under different bias voltages. In conjunction with a theoretical model, we have finally extracted both the interface state density of and resistivity suspended silicon nanobridges under different bending deformations, and found that the resistivity of silicon nanobridges without bending was 9.45 mΩ.cm and the corresponding interface charge density was around 1.7445 × 10^13 cm-2. The bending deformation due to the bias voltage slightly changed the resistivity of the silicon nanobridge, however, it significantly changed the distribution of interface state charges, which strongly depends on the intensity of the stress induced by bending deformation.
基金by the National Science Foundation and the Ministry of Science and Technology of China and the Penn.State MRSEC under NSF grant DMR-0820404.
文摘Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb fi lms using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques.We observed novel magnetoresistance oscillations below the superconducting transition temperature(TC)of the bridges.The oscillations which were not seen in the crystalline Pb fi lmsmay originate from the inhomogeneity of superconductivity induced by the applied magnetic fi elds on approaching the normal state,or the degradation of fi lm quality by thermal evolution.
基金supported by an Earmarked Research Grant (No.622506) from the Research Grants Council of the HongKong Special Administrative Region,China
文摘This paper analyzes nanobridge tests with consideration of adhesive contact deformation, which occurs between a probe tip and a tested nanobeam, and deformation of a substrate or template that supports the tested nanobeam.Analytical displacement-load relation, including adhesive contact deformation and substrate deformation, is presented here for small deformation of bending.The analytic results are confirmed by finite element analysis.If adhesive contact deformation and substrate deformation are not considered in the analysis of nanobridge test data, they might lead to lower values of Young's modulus of tested nanobeams.