PMMA/reactive nanoclay nanocomposites were prepared by emulsion polymerization using two different reactive nanoclays. X-ray diffraction(XRD) and thermogravimetric analysis(TGA) results confirmed that the reactive...PMMA/reactive nanoclay nanocomposites were prepared by emulsion polymerization using two different reactive nanoclays. X-ray diffraction(XRD) and thermogravimetric analysis(TGA) results confirmed that the reactive nanoclays, kaolinite and montmorillonite, were obtained by the silylation reaction and the double bonds were grafted onto the edges and surfaces of the nanoclays. The presence of reactive nanoclays could increase the average molecular weights, the glass transition temperatures(Tg) and improve the thermal properties of nanocomposite. The tensile properties, Young's modulus, and the aging properties of the nanocomposite films were also enhanced while the light transmittance decreased. Furthermore, the nanocomposites with the reactive kaolinite presented better performances than that with the reactive montmorillonite. Finally, the action mechanism of the reactive nanoclays to the performances of PMMA/reactive nanoclay nanocomposites was proposed.展开更多
基金Funded by the National Youth Natural Science Foundation of China(No.21406247)
文摘PMMA/reactive nanoclay nanocomposites were prepared by emulsion polymerization using two different reactive nanoclays. X-ray diffraction(XRD) and thermogravimetric analysis(TGA) results confirmed that the reactive nanoclays, kaolinite and montmorillonite, were obtained by the silylation reaction and the double bonds were grafted onto the edges and surfaces of the nanoclays. The presence of reactive nanoclays could increase the average molecular weights, the glass transition temperatures(Tg) and improve the thermal properties of nanocomposite. The tensile properties, Young's modulus, and the aging properties of the nanocomposite films were also enhanced while the light transmittance decreased. Furthermore, the nanocomposites with the reactive kaolinite presented better performances than that with the reactive montmorillonite. Finally, the action mechanism of the reactive nanoclays to the performances of PMMA/reactive nanoclay nanocomposites was proposed.