High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(...High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.展开更多
The bio-based epoxy nanocomposite(GAER/DOPO-POSS)was prepared from gallic epoxy resin(GAER)and polyhedral oligomeric silsesquioxane(which containing 9,10-dihydrogen-9-oxo-10-phosphorus-phenanthrene-10-oxide groups,cal...The bio-based epoxy nanocomposite(GAER/DOPO-POSS)was prepared from gallic epoxy resin(GAER)and polyhedral oligomeric silsesquioxane(which containing 9,10-dihydrogen-9-oxo-10-phosphorus-phenanthrene-10-oxide groups,called DOPO-POSS).The polyhedral oligomeric silsesquioxane containing epoxy groups(E-POSS)was grafted onto aminated graphene oxide(E-GO),then the novel POSS-E-GO was obtained.The POSS-E-GO was used as modifier for GAER/DOPO-POSS nanocomposite.The influences of POSS-E-GO content on mechanical properties,dynamic mechanical properties and thermal stability of GAER/DOPO-POSS nanocomposites were determined.The experimental results show that POSS-E-GO can significantly improve the toughness of the GAER/DOPO-POSS nanocomposite.When 0.5wt% POSS-E-GO was added in GAER/DOPO-POSS nanocomposite,the impact strength of the nanocomposite was 4.74 kJ/m^(2) higher than that in the absence of POSS-E-GO,meantime the initial thermal degradation temperature was 277℃.展开更多
The dispersion of nanoparticles plays a key role in enhancing the mechanical performance of polymer nanocomposites.In this work,one hybrid epoxy nanocomposite reinforced by a well dispersed,zinc oxide functionalized,m...The dispersion of nanoparticles plays a key role in enhancing the mechanical performance of polymer nanocomposites.In this work,one hybrid epoxy nanocomposite reinforced by a well dispersed,zinc oxide functionalized,multi-wall carbon nanotube (Zn O-MWCNT) and core-shell rubber (CSR) was prepared,which possesses both high modulus and fracture toughness while maintaining relatively high glass transition temperature (Tg).The improved fracture toughness from 0.82 MPa mfor neat epoxy to 1.46 MPa mfor the ternary epoxy nanocomposites is resulted from a series of synergistic toughening mechanisms,including cavitation of CSR-induced matrix shear banding,along with the fracture of MWCNTs and crack deflection.The implication of the present study for the preparation of high-performance polymer nanocomposites is discussed.展开更多
A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 a...A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 and EPA6N at temperatures of 225 and 235 ℃ were investigated.The results of transmission electron microscopy(TEM) and atomic force microscopy(AFM) indicate that the silica particles are well dispersed in the polyamide 6 matrix on about 30 nm in diameter,which demonstrates that this method can effectively avoid agglomeration of the inorganic particles.The rheological results suggest that pure PA6 shows Newtonian behavior.However,the novel EPA6N exhibits a solid-like rheological behavior,which is due to the small size,large surface of silica particles and the stronger polyamide 6-silica chemical bond formed through the reactions of epoxy resins with end groups of PA6 molecular chains.The EPA6N also exhibits higher melt viscosity,storage modulus and loss modulus than those of pure PA6.展开更多
Fibrous organic sepiolites (OSEP) and novel epoxy/OSEP nanocomposites were prepared, and different methods were investigated to produce an intercalated/exfoliated structure of OSEP. Experimental results show that th...Fibrous organic sepiolites (OSEP) and novel epoxy/OSEP nanocomposites were prepared, and different methods were investigated to produce an intercalated/exfoliated structure of OSEP. Experimental results show that the modifier molecules can be easily adsorbed by the sepiolite, but the layer space (d001 of the sepiolite, linked by means of covalent bond, remains unchanged. A proper method to solve this problem appears to exert large shearing force on the original sepiolite followed by its organic modification (OSEP2). The morphology observation shows that there are formed an even dispersion of nano-sized OSEP2 fibers in epoxy resin and a structure intercalated by epoxy molecules, which lead to significantly improved mechanical properties. Impact strength of the epoxy/OSEP2 nanocomposite increases from 32.1 kJ/m^2 to 44.4 kJ/m^2, 38.3% higher than that of pristine matrix with 3 wt% OSEP2 content. It is also noted that the flexural strength of the OSEP/epoxy composites has risen by about 3% higher than that of the pure epoxy resin.展开更多
Morphology and mechanical properties of clay/high-functional epoxy nanocomposites are investigated. An intercalated morphology is always observed for clay loadings ≤5 wt %. The glass transition temperature (Tg) of ...Morphology and mechanical properties of clay/high-functional epoxy nanocomposites are investigated. An intercalated morphology is always observed for clay loadings ≤5 wt %. The glass transition temperature (Tg) of the composites decreases with the clay loading, and the impact strength increases first by 10% at 2 wt% clay loading, and is followed by a dramatic decline, while the flexural strength decreases in all cases.展开更多
A new type of inorganic-polymer materials of epoxy Titanium Dioxide and Zinc Oxide was prepared. In this work, the mechanical properties of polymer composites reinforced with ceramic nanoparticles were investigated. T...A new type of inorganic-polymer materials of epoxy Titanium Dioxide and Zinc Oxide was prepared. In this work, the mechanical properties of polymer composites reinforced with ceramic nanoparticles were investigated. Three points bending tests demonstrated an enhancement in flexural strength and flexural modulus respectively, compared to the pure epoxy. The reinforcement of nanoparticulate materials was Titanium Dioxide and Zinc Oxide with various weight fraction. Experimental tests results indicated that the composite materials have significantly higher modulus of elasticity than the matrix material. It was found that the enhancement in modulus of elasticity was directly proportional to the weight fraction of reinforcement material, and that Zinc Oxide composites have higher modulus of elasticity than Titanium Dioxide composites with equivalent of weight fraction. The wear results showed that nanoparticles improved the wear resistance of epoxy nanocomposites, the Titanium Dioxide matrix particles could improve the wear resistance of the epoxy more efficiently than Zinc Oxide particles. The fatigue test showed that the fatigue resistance of epoxy Zinc Oxide matrix particles was higher than that of Titanium Dioxide matrix particles.展开更多
The stiff and fragile structure of thermosetting polymers, such as epoxy, accomplices the innate cracks to cause fracture and therefore the applications of monolithic epoxy are not ubiquitous. However, it is well esta...The stiff and fragile structure of thermosetting polymers, such as epoxy, accomplices the innate cracks to cause fracture and therefore the applications of monolithic epoxy are not ubiquitous. However, it is well established that when reinforced especially by nano-fillers, its ability to withstand crack propagation is propitiously improved. The crack is either deflected or bifurcated when interacting with strong nano-filler such as Multi-Layer Graphene (MLG). Due to the deflection and bifurcation of cracks, specific fracture patterns are observed. Although these fracture patterns seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the influence of nano-filler on the mechanical properties. Here we show that, by a meticulous examination of topographical features of fractured patterns, various important aspects related to fillers can be approximated such as dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the incorporation of filler on the mechanical properties of nanocomposites.展开更多
To further investigate the influence of organic modifiers (primary amine with catalytic hydrogen and quaternary alkylammonium salt) on exfoliation behavior of clay tactoids, high-speed emulsifying and homogeneous mi...To further investigate the influence of organic modifiers (primary amine with catalytic hydrogen and quaternary alkylammonium salt) on exfoliation behavior of clay tactoids, high-speed emulsifying and homogeneous mixing(HEHM) and ball milling were used to exert external shearing force on two organic clay tactoids (termed as ((MMT)DDA) and ((MMT)DBDA), respectively), which were organically modified with DoDecyl Amine(DDA) and Dodecyl Benzyl Dimethyl Ammonium chloride(DBDA),respectively. The effects of external shearing force on microstructure and properties of both resultant nanocomposites were investigated by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA). The results show that whether the clay tactoids are organically modified with catalytic primary amine or quaternary alkylammonium salt, the large agglomerates will not be finely dispersed or exfoliated by conventional mixing (magnetic stirring). After being vigorously sheared by (HEHM) or ball milling, the dispersion and exfoliation of clay tactoids are increasingly promoted for both ((MMT)DDA) and ((MMT)DBDA), and the mechanical properties of the high-performance epoxy/clay nanocomposites are enhanced. For epoxy/((MMT)DDA) nanocomposites, impact strength can be increased up to 44.5 kJ/m2 from 32.1 kJ/m2, which is about 39% higher than that of pristine matrix, and the flexural strength is enhanced by about 4%. A similar enhancement for epoxy/((MMT)DBDA) nanocomposites has also been achieved. Improvement on thermal stability of epoxy/clay nanocomposites is dependent on the exfoliation of clay layers and molecular structure of the modifiers. The onset temperature is increased with the clay loading decreasing from 5% or higher content to 3%(mass fraction), and the DBDA modifier with the heat-resistant benzyl may also improve the stability of epoxy/((MMT)DBDA) nanocomposites.展开更多
Carbon nanotubes(CNTs) have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the areas of electrical applianc...Carbon nanotubes(CNTs) have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications. However, due to their miniature size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. In order to enhance their chemical affinity to engineering polymer matrices, chemical modification of the graphitic sidewalls and tips is necessary. The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area. Recently, carbonaceous nano-fillers such as graphene and carbon nanotubes(CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field. Since CNTs usually form stabilized bundles due to van der Waals interactions, they are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, the assessment of the dispersion, and the alignment and control of the CNTs in the matrix. An overview of various CNT functionalization methods is given. In particular, CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion. In addition, discussions on mechanical, thermal, electrical, electrochemical and applications of polymer/CNT composites are also included.展开更多
A critical challenge for initiating many applications of the carbon nanotubes(CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon...A critical challenge for initiating many applications of the carbon nanotubes(CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon nanotubes(CNTs)-reinforced epoxy nanocomposite by utilizing aniline trimer(AT) as the noncovalent dispersant. Tensile testing showed that the tensile modulus of the CNTs-reinforced epoxy composites was considerably improved by adding a small amount of AT functionalized CNTs. Additionally, the as-prepared CNTs-epoxy nanocomposites exhibited superior tribological properties with much lower frictional coefficients and wear rates compared to those of neat epoxy resin. The well dispersed AT-functionalized CNTs in epoxy matrix played an important role in enhancing the mechanical properties, as well as acting as a solid lubricant for improving the tribological performance of epoxy/CNTs nanocomposite.展开更多
Hierarchical layered structures,whether in a compact form like nacre or a porous manner like bone,are well known for their combined features of high stiffness,strength,and lightweight,inspiring many man-made materials...Hierarchical layered structures,whether in a compact form like nacre or a porous manner like bone,are well known for their combined features of high stiffness,strength,and lightweight,inspiring many man-made materials and structures for high performance applications.The use of nacre/bone like hierarchical structures in polymer nanocomposites can achieve excellent mechanical and functional properties with high filler volume fractions after carefully aligning functional nanofillers,although the fabrication and processing remain a great challenge.In this work,a bio-inspired lightweight nano-cellular epoxy/graphene-Fe_(3)O_(4) nanocomposite with high nanofiller loading of 75 wt.%was successfully fabricated by combining features from both nacre and bone structures,via a simple compression molding process together with an eco-friendly supercritical CO_(2) foaming process to achieve robust mechanical strength and excellent electromagnetic interference(EMI)shielding effectiveness(SE)simultaneously.Highly aligned graphene-Fe_(3)O_(4) nanoplatelets with well controlled nanoscale porous structures(52.6 nm)enabled both low density(1.26 g/cm^(3))and high specific EMI SE>5200 dB/cm^(2)/g,as well as preserved tensile strength of 67 MPa.This study provides a sustainable route to fabricate nature mimicked structures with high performance and high flexibility for a wide range of applications,from portable electronics to healthcare devices.展开更多
Massive limestones were used in construction of ancient Egyptian tombs, temples, obelisks and other sculptures. These stones are always exposed to physico-mechanical deterioration and destructive forces, leading to pa...Massive limestones were used in construction of ancient Egyptian tombs, temples, obelisks and other sculptures. These stones are always exposed to physico-mechanical deterioration and destructive forces, leading to partial or total collapse. The task of reassembling this type of artifacts represents a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken massive stones. The epoxy resins are used extensively in stone conservation and re-assembly of broken stones because of their outstanding mechanical properties. The adding of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and massive objects. The aim of this study is to evaluate the effectiveness of montmorillonite clay, calcium carbonate, and silicon dioxide nanoparticles for enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive limestones. Scanning electron microscopy (SEM) was employed in order to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. Artificial aging, tensile, compressive, and elongation strength tests were used to evaluate the efficiency of epoxy-nanocomposites. The results showed that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and elongation strength, in addition to improving the mechanical properties of stone joints.展开更多
This part of study represents the applied study;which is a continuation of the experimental study that was carried out in part 1 [1]<span "="">. The experimental study in part 1 focused on ev...This part of study represents the applied study;which is a continuation of the experimental study that was carried out in part 1 [1]<span "="">. The experimental study in part 1 focused on evaluation of the effectiveness of Montmorillonite clay, calcium carbonate, and silicon dioxide nanoparticles for enhancing the performances of epoxy adhesives used in re-assembly of archaeological </span>massive limestones. Based on the obtained results in part 1, the choice fell on epoxy-clay nanocomposites as the best re-assembly adhesive material reinforced with Stainless Steel to conduct the applied study project. The current applied study that <span "="">represents a big project was carried out on 3 archaeological pharaonic massive limestones discovered separately in Ain Shams (Heliopolis) archaeological area in Egypt. The methodology included an accurate archaeological study, followed by analytical, and then the restoration and reassembly process. Firstly;in order to prove whether these artifacts are complementary to each other or not, then with a view to re-assembly and conserving these artifacts in the form of one stone block to be ready for museum display. Referred to the comprehensive archaeological and analytical study of the mentioned archeological stones, the results confirmed that, these stone pieces, in the original were one piece, therefore, it is possible to regrouping again to become one block complementary to each other, and this is what was done in this study.展开更多
Graphene oxide was prepared by ultrasonication of completely oxidized graphite and used to improve the flame retardancy of epoxy. The epoxy/graphene oxide nanocomposite was studied in terms of exfoliation/dispersion, ...Graphene oxide was prepared by ultrasonication of completely oxidized graphite and used to improve the flame retardancy of epoxy. The epoxy/graphene oxide nanocomposite was studied in terms of exfoliation/dispersion, thermal stability and flame retardancy. X-ray diffraction and transmission electron microscopy confirmed the exfoliation of the graphene oxide nanosheets in epoxy matrix. Cone calorimeter measurements showed that the time to ignition of the epoxy/graphene oxide nanocomposite was longer than that of neat epoxy. The heat release rate curve of the nanocomposite was broadened compared to that of neat epoxy and the peak heat release rate decreased as well.展开更多
Growing demand for high-performance materials is driving the development of composites with nano material reinforcement. The use of nano reinforcement can provide a distinct advantage due to high surface area of the m...Growing demand for high-performance materials is driving the development of composites with nano material reinforcement. The use of nano reinforcement can provide a distinct advantage due to high surface area of the material. There are still many challenges in achieving the full potential of nanocomposites. In this paper, we investigate the performance of epoxy nanocomposites reinforced with short polymethyl methacrylate (PMMA) nanofibers. PMMA nanofibers were chopped and mixed with the epoxy resin and then the mixture was poured into a mould. Samples were cut to an appropriate size after cure and mechanical testing was carried out. Tensile and flexural strength and modulus were evaluated for samples with various fiber volume fractions to determine changes in mechanical performance. Also Scanning Electron Microscopy was utilized to investigate fracture surface and fiber-matrix interface. Results indicated that mechanical performance dropped as volume fraction of fibers increased, namely poor fiber-matrix adhesion and presence of porosity resulted in deterioration in strength and modulus. Further research is required to develop fiber coating system to enhance performance of the nanocomposite by improving fiber-matrix adhesion and fiber wet-out.展开更多
In this work, the MoS2 fillers were prepared through chemical exfoliation method and used as fillers to fabricate epoxy (EP)/MoS2 nanocomposites. The effects of molybdenum disulfide (MoS2) intercalation conditions on ...In this work, the MoS2 fillers were prepared through chemical exfoliation method and used as fillers to fabricate epoxy (EP)/MoS2 nanocomposites. The effects of molybdenum disulfide (MoS2) intercalation conditions on the properties of EP/MoS2 nanocomposites were investigated. As the intercalation time was prolonged, the surface of MoS2 exhibited a totally crumpled structure and more functional groups formed. Because of the higher functional group concentration, the interfacial adhesion force between EP and MoS2 was enhanced. With the addition of 1.0 wt% exfoliated MoS2 fillers, the tensile strength and tensile modulus of EP were even improved ~500% and ~6800%, respectively. Therefore, this work provides a facile way to produce high-performance EP nanocomposites.展开更多
ZnS/bacterial cellulose/epoxy resin (ZnS/BC/E56) nanocomposites with good transparency and flexibil-ity were prepared and characterized. When the precursor Zn^2+ concentrations were not more than I wt%, the size of...ZnS/bacterial cellulose/epoxy resin (ZnS/BC/E56) nanocomposites with good transparency and flexibil-ity were prepared and characterized. When the precursor Zn^2+ concentrations were not more than I wt%, the size of the introduced ZnS nanoparticles was smaller than 50 nm and the distribution was homo-geneous within the composites. Under the condition, outstanding transmittance more than 70g in the visible light was obtained. By incorporation of ZnS nanoparticles with excellent thermo-optic stability to the composites, the thermo-optic coefficient was obviously increased from -361 × 10^-6 to -310 × 10^-6K^-1. The good flexibility, optical and mechanical properties endow the nanocomposites potential applica- tions in the flexible optoelectronic materials.展开更多
An attempt is made to study the effect of low weight percentage multiwall carbon nanotube(MWCNT)powder on dielectric properties of MWCNT reinforced epoxy composites.For that MWCNT(of different low weight percentage)re...An attempt is made to study the effect of low weight percentage multiwall carbon nanotube(MWCNT)powder on dielectric properties of MWCNT reinforced epoxy composites.For that MWCNT(of different low weight percentage)reinforced epoxy composite was prepared by dispersing the MWCNT in resin.Samples were prepared by solution casting process and characterized for their dielectric properties such as dieletric constant(ε′),dielectric dissipation factor(tan δ)and AC conductivity(σ_(ac)).The main objective is the investigation of the dieletric properties of the prepared samples at the low weight percentage of the filler at different temperatures and frequencies.From the two mechanisms of electrical conduction,first the leakage current obtained by the formation of a percolation network in the matrix and the other by tunneling of electrons formed among conductors nearby(tunneling current);here we are getting conduction by the second mechanism.Generally,leakage current makes more contribution to conductivity than tunneling current.Dielectric dissipation factor at 250 Hz frequency is greater than all other frequencies and starts increasing from 60℃.The peak height of the transition temperature decreases with increasing frequency.This study shows that the addition of a low weight percentage of MWCNT can modify considerably the electrical behavior of epoxy nanocomposites without chemical functionalization of fller.展开更多
Epoxy resin nanocomposites reinforced with three different ionic liquid functionalized carbon nanotubes(f-CNTs)were fabricated by an in situ polymerization method.The influence of the anions on the curing process was ...Epoxy resin nanocomposites reinforced with three different ionic liquid functionalized carbon nanotubes(f-CNTs)were fabricated by an in situ polymerization method.The influence of the anions on the curing process was studied through differential scanning calorimetry(DSC)and normalized Fourier transform infrared(FTIR)spectroscopy.The composition of the nanocomposites was analyzed by X-ray photoelectron spectroscopy.Two different mechanisms are proposed to explain the curing process of the neat epoxy and its composites.The electric conductivity and mechanical properties of the nanocomposites are also reported.The tensile strength was increased dramatically due to the insertion of f-CNTs.Scanning electron microsopy fracture surface analysis indicates a strong interfacial bonding between the carbon nanotubes and the polymer matrix.展开更多
基金The authors are grateful for the supports from the National Natural Science Foundation of China(U21A2093 and 52203100)Y.L.Zhang would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021107)。
文摘High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc.
基金Funded by the Natural Science Foundation of Hebei Province(No.B2019210221)the Project by S&T Program of Hebei(No.206Z1202G)。
文摘The bio-based epoxy nanocomposite(GAER/DOPO-POSS)was prepared from gallic epoxy resin(GAER)and polyhedral oligomeric silsesquioxane(which containing 9,10-dihydrogen-9-oxo-10-phosphorus-phenanthrene-10-oxide groups,called DOPO-POSS).The polyhedral oligomeric silsesquioxane containing epoxy groups(E-POSS)was grafted onto aminated graphene oxide(E-GO),then the novel POSS-E-GO was obtained.The POSS-E-GO was used as modifier for GAER/DOPO-POSS nanocomposite.The influences of POSS-E-GO content on mechanical properties,dynamic mechanical properties and thermal stability of GAER/DOPO-POSS nanocomposites were determined.The experimental results show that POSS-E-GO can significantly improve the toughness of the GAER/DOPO-POSS nanocomposite.When 0.5wt% POSS-E-GO was added in GAER/DOPO-POSS nanocomposite,the impact strength of the nanocomposite was 4.74 kJ/m^(2) higher than that in the absence of POSS-E-GO,meantime the initial thermal degradation temperature was 277℃.
基金the KANEKA Corporation for their financial support。
文摘The dispersion of nanoparticles plays a key role in enhancing the mechanical performance of polymer nanocomposites.In this work,one hybrid epoxy nanocomposite reinforced by a well dispersed,zinc oxide functionalized,multi-wall carbon nanotube (Zn O-MWCNT) and core-shell rubber (CSR) was prepared,which possesses both high modulus and fracture toughness while maintaining relatively high glass transition temperature (Tg).The improved fracture toughness from 0.82 MPa mfor neat epoxy to 1.46 MPa mfor the ternary epoxy nanocomposites is resulted from a series of synergistic toughening mechanisms,including cavitation of CSR-induced matrix shear banding,along with the fracture of MWCNTs and crack deflection.The implication of the present study for the preparation of high-performance polymer nanocomposites is discussed.
基金Project(07A071) supported by the Scientific Research Foundation of Hunan Provincial Education Department
文摘A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 and EPA6N at temperatures of 225 and 235 ℃ were investigated.The results of transmission electron microscopy(TEM) and atomic force microscopy(AFM) indicate that the silica particles are well dispersed in the polyamide 6 matrix on about 30 nm in diameter,which demonstrates that this method can effectively avoid agglomeration of the inorganic particles.The rheological results suggest that pure PA6 shows Newtonian behavior.However,the novel EPA6N exhibits a solid-like rheological behavior,which is due to the small size,large surface of silica particles and the stronger polyamide 6-silica chemical bond formed through the reactions of epoxy resins with end groups of PA6 molecular chains.The EPA6N also exhibits higher melt viscosity,storage modulus and loss modulus than those of pure PA6.
文摘Fibrous organic sepiolites (OSEP) and novel epoxy/OSEP nanocomposites were prepared, and different methods were investigated to produce an intercalated/exfoliated structure of OSEP. Experimental results show that the modifier molecules can be easily adsorbed by the sepiolite, but the layer space (d001 of the sepiolite, linked by means of covalent bond, remains unchanged. A proper method to solve this problem appears to exert large shearing force on the original sepiolite followed by its organic modification (OSEP2). The morphology observation shows that there are formed an even dispersion of nano-sized OSEP2 fibers in epoxy resin and a structure intercalated by epoxy molecules, which lead to significantly improved mechanical properties. Impact strength of the epoxy/OSEP2 nanocomposite increases from 32.1 kJ/m^2 to 44.4 kJ/m^2, 38.3% higher than that of pristine matrix with 3 wt% OSEP2 content. It is also noted that the flexural strength of the OSEP/epoxy composites has risen by about 3% higher than that of the pure epoxy resin.
文摘Morphology and mechanical properties of clay/high-functional epoxy nanocomposites are investigated. An intercalated morphology is always observed for clay loadings ≤5 wt %. The glass transition temperature (Tg) of the composites decreases with the clay loading, and the impact strength increases first by 10% at 2 wt% clay loading, and is followed by a dramatic decline, while the flexural strength decreases in all cases.
文摘A new type of inorganic-polymer materials of epoxy Titanium Dioxide and Zinc Oxide was prepared. In this work, the mechanical properties of polymer composites reinforced with ceramic nanoparticles were investigated. Three points bending tests demonstrated an enhancement in flexural strength and flexural modulus respectively, compared to the pure epoxy. The reinforcement of nanoparticulate materials was Titanium Dioxide and Zinc Oxide with various weight fraction. Experimental tests results indicated that the composite materials have significantly higher modulus of elasticity than the matrix material. It was found that the enhancement in modulus of elasticity was directly proportional to the weight fraction of reinforcement material, and that Zinc Oxide composites have higher modulus of elasticity than Titanium Dioxide composites with equivalent of weight fraction. The wear results showed that nanoparticles improved the wear resistance of epoxy nanocomposites, the Titanium Dioxide matrix particles could improve the wear resistance of the epoxy more efficiently than Zinc Oxide particles. The fatigue test showed that the fatigue resistance of epoxy Zinc Oxide matrix particles was higher than that of Titanium Dioxide matrix particles.
文摘The stiff and fragile structure of thermosetting polymers, such as epoxy, accomplices the innate cracks to cause fracture and therefore the applications of monolithic epoxy are not ubiquitous. However, it is well established that when reinforced especially by nano-fillers, its ability to withstand crack propagation is propitiously improved. The crack is either deflected or bifurcated when interacting with strong nano-filler such as Multi-Layer Graphene (MLG). Due to the deflection and bifurcation of cracks, specific fracture patterns are observed. Although these fracture patterns seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the influence of nano-filler on the mechanical properties. Here we show that, by a meticulous examination of topographical features of fractured patterns, various important aspects related to fillers can be approximated such as dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the incorporation of filler on the mechanical properties of nanocomposites.
文摘To further investigate the influence of organic modifiers (primary amine with catalytic hydrogen and quaternary alkylammonium salt) on exfoliation behavior of clay tactoids, high-speed emulsifying and homogeneous mixing(HEHM) and ball milling were used to exert external shearing force on two organic clay tactoids (termed as ((MMT)DDA) and ((MMT)DBDA), respectively), which were organically modified with DoDecyl Amine(DDA) and Dodecyl Benzyl Dimethyl Ammonium chloride(DBDA),respectively. The effects of external shearing force on microstructure and properties of both resultant nanocomposites were investigated by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA). The results show that whether the clay tactoids are organically modified with catalytic primary amine or quaternary alkylammonium salt, the large agglomerates will not be finely dispersed or exfoliated by conventional mixing (magnetic stirring). After being vigorously sheared by (HEHM) or ball milling, the dispersion and exfoliation of clay tactoids are increasingly promoted for both ((MMT)DDA) and ((MMT)DBDA), and the mechanical properties of the high-performance epoxy/clay nanocomposites are enhanced. For epoxy/((MMT)DDA) nanocomposites, impact strength can be increased up to 44.5 kJ/m2 from 32.1 kJ/m2, which is about 39% higher than that of pristine matrix, and the flexural strength is enhanced by about 4%. A similar enhancement for epoxy/((MMT)DBDA) nanocomposites has also been achieved. Improvement on thermal stability of epoxy/clay nanocomposites is dependent on the exfoliation of clay layers and molecular structure of the modifiers. The onset temperature is increased with the clay loading decreasing from 5% or higher content to 3%(mass fraction), and the DBDA modifier with the heat-resistant benzyl may also improve the stability of epoxy/((MMT)DBDA) nanocomposites.
文摘Carbon nanotubes(CNTs) have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications. However, due to their miniature size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. In order to enhance their chemical affinity to engineering polymer matrices, chemical modification of the graphitic sidewalls and tips is necessary. The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area. Recently, carbonaceous nano-fillers such as graphene and carbon nanotubes(CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field. Since CNTs usually form stabilized bundles due to van der Waals interactions, they are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, the assessment of the dispersion, and the alignment and control of the CNTs in the matrix. An overview of various CNT functionalization methods is given. In particular, CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion. In addition, discussions on mechanical, thermal, electrical, electrochemical and applications of polymer/CNT composites are also included.
基金financially supported by “One Hundred Talented People” of the Chinese Academy of Sciences(No.Y60707WR04)National Basic Research Program(973 Program,No.2015CB654705)Natural Science Foundation of Zhejiang Province(No.LY16B040004)
文摘A critical challenge for initiating many applications of the carbon nanotubes(CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon nanotubes(CNTs)-reinforced epoxy nanocomposite by utilizing aniline trimer(AT) as the noncovalent dispersant. Tensile testing showed that the tensile modulus of the CNTs-reinforced epoxy composites was considerably improved by adding a small amount of AT functionalized CNTs. Additionally, the as-prepared CNTs-epoxy nanocomposites exhibited superior tribological properties with much lower frictional coefficients and wear rates compared to those of neat epoxy resin. The well dispersed AT-functionalized CNTs in epoxy matrix played an important role in enhancing the mechanical properties, as well as acting as a solid lubricant for improving the tribological performance of epoxy/CNTs nanocomposite.
基金the National Natural Science Foundation of China(Grant No.51773170)the Shaanxi Coal Joint Fund(Grant 2019JLM-24)+3 种基金funded by the International Science&Technology Cooperation Plan of Shaanxi Province(2021KW-52)Fund of Natural Science Foundation of Shaanxi Provincial(2021JQ-111)Fund of Basic and Applied Fundamental Research of Guangdong Provincial(2020A1515110861)sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX202051)。
文摘Hierarchical layered structures,whether in a compact form like nacre or a porous manner like bone,are well known for their combined features of high stiffness,strength,and lightweight,inspiring many man-made materials and structures for high performance applications.The use of nacre/bone like hierarchical structures in polymer nanocomposites can achieve excellent mechanical and functional properties with high filler volume fractions after carefully aligning functional nanofillers,although the fabrication and processing remain a great challenge.In this work,a bio-inspired lightweight nano-cellular epoxy/graphene-Fe_(3)O_(4) nanocomposite with high nanofiller loading of 75 wt.%was successfully fabricated by combining features from both nacre and bone structures,via a simple compression molding process together with an eco-friendly supercritical CO_(2) foaming process to achieve robust mechanical strength and excellent electromagnetic interference(EMI)shielding effectiveness(SE)simultaneously.Highly aligned graphene-Fe_(3)O_(4) nanoplatelets with well controlled nanoscale porous structures(52.6 nm)enabled both low density(1.26 g/cm^(3))and high specific EMI SE>5200 dB/cm^(2)/g,as well as preserved tensile strength of 67 MPa.This study provides a sustainable route to fabricate nature mimicked structures with high performance and high flexibility for a wide range of applications,from portable electronics to healthcare devices.
文摘Massive limestones were used in construction of ancient Egyptian tombs, temples, obelisks and other sculptures. These stones are always exposed to physico-mechanical deterioration and destructive forces, leading to partial or total collapse. The task of reassembling this type of artifacts represents a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken massive stones. The epoxy resins are used extensively in stone conservation and re-assembly of broken stones because of their outstanding mechanical properties. The adding of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and massive objects. The aim of this study is to evaluate the effectiveness of montmorillonite clay, calcium carbonate, and silicon dioxide nanoparticles for enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive limestones. Scanning electron microscopy (SEM) was employed in order to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. Artificial aging, tensile, compressive, and elongation strength tests were used to evaluate the efficiency of epoxy-nanocomposites. The results showed that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and elongation strength, in addition to improving the mechanical properties of stone joints.
文摘This part of study represents the applied study;which is a continuation of the experimental study that was carried out in part 1 [1]<span "="">. The experimental study in part 1 focused on evaluation of the effectiveness of Montmorillonite clay, calcium carbonate, and silicon dioxide nanoparticles for enhancing the performances of epoxy adhesives used in re-assembly of archaeological </span>massive limestones. Based on the obtained results in part 1, the choice fell on epoxy-clay nanocomposites as the best re-assembly adhesive material reinforced with Stainless Steel to conduct the applied study project. The current applied study that <span "="">represents a big project was carried out on 3 archaeological pharaonic massive limestones discovered separately in Ain Shams (Heliopolis) archaeological area in Egypt. The methodology included an accurate archaeological study, followed by analytical, and then the restoration and reassembly process. Firstly;in order to prove whether these artifacts are complementary to each other or not, then with a view to re-assembly and conserving these artifacts in the form of one stone block to be ready for museum display. Referred to the comprehensive archaeological and analytical study of the mentioned archeological stones, the results confirmed that, these stone pieces, in the original were one piece, therefore, it is possible to regrouping again to become one block complementary to each other, and this is what was done in this study.
基金supported by the National Natural Science Foundation of China(No.50873006)Program for New Century Excellent Talents in Universities,Ministry of Education of China(NCET-08-0711)
文摘Graphene oxide was prepared by ultrasonication of completely oxidized graphite and used to improve the flame retardancy of epoxy. The epoxy/graphene oxide nanocomposite was studied in terms of exfoliation/dispersion, thermal stability and flame retardancy. X-ray diffraction and transmission electron microscopy confirmed the exfoliation of the graphene oxide nanosheets in epoxy matrix. Cone calorimeter measurements showed that the time to ignition of the epoxy/graphene oxide nanocomposite was longer than that of neat epoxy. The heat release rate curve of the nanocomposite was broadened compared to that of neat epoxy and the peak heat release rate decreased as well.
文摘Growing demand for high-performance materials is driving the development of composites with nano material reinforcement. The use of nano reinforcement can provide a distinct advantage due to high surface area of the material. There are still many challenges in achieving the full potential of nanocomposites. In this paper, we investigate the performance of epoxy nanocomposites reinforced with short polymethyl methacrylate (PMMA) nanofibers. PMMA nanofibers were chopped and mixed with the epoxy resin and then the mixture was poured into a mould. Samples were cut to an appropriate size after cure and mechanical testing was carried out. Tensile and flexural strength and modulus were evaluated for samples with various fiber volume fractions to determine changes in mechanical performance. Also Scanning Electron Microscopy was utilized to investigate fracture surface and fiber-matrix interface. Results indicated that mechanical performance dropped as volume fraction of fibers increased, namely poor fiber-matrix adhesion and presence of porosity resulted in deterioration in strength and modulus. Further research is required to develop fiber coating system to enhance performance of the nanocomposite by improving fiber-matrix adhesion and fiber wet-out.
文摘In this work, the MoS2 fillers were prepared through chemical exfoliation method and used as fillers to fabricate epoxy (EP)/MoS2 nanocomposites. The effects of molybdenum disulfide (MoS2) intercalation conditions on the properties of EP/MoS2 nanocomposites were investigated. As the intercalation time was prolonged, the surface of MoS2 exhibited a totally crumpled structure and more functional groups formed. Because of the higher functional group concentration, the interfacial adhesion force between EP and MoS2 was enhanced. With the addition of 1.0 wt% exfoliated MoS2 fillers, the tensile strength and tensile modulus of EP were even improved ~500% and ~6800%, respectively. Therefore, this work provides a facile way to produce high-performance EP nanocomposites.
基金financially supported by the Program of Introducing Talents of Discipline to Universities (No. B07024)the Shanghai Leading Academic Discipline Project (No. B603)+1 种基金the National Natural Science Foundation of China (No. 51273043)the Project of the Action on Scientists and Engineers to Serve Enterprises (No. 2009GJE20016)
文摘ZnS/bacterial cellulose/epoxy resin (ZnS/BC/E56) nanocomposites with good transparency and flexibil-ity were prepared and characterized. When the precursor Zn^2+ concentrations were not more than I wt%, the size of the introduced ZnS nanoparticles was smaller than 50 nm and the distribution was homo-geneous within the composites. Under the condition, outstanding transmittance more than 70g in the visible light was obtained. By incorporation of ZnS nanoparticles with excellent thermo-optic stability to the composites, the thermo-optic coefficient was obviously increased from -361 × 10^-6 to -310 × 10^-6K^-1. The good flexibility, optical and mechanical properties endow the nanocomposites potential applica- tions in the flexible optoelectronic materials.
文摘An attempt is made to study the effect of low weight percentage multiwall carbon nanotube(MWCNT)powder on dielectric properties of MWCNT reinforced epoxy composites.For that MWCNT(of different low weight percentage)reinforced epoxy composite was prepared by dispersing the MWCNT in resin.Samples were prepared by solution casting process and characterized for their dielectric properties such as dieletric constant(ε′),dielectric dissipation factor(tan δ)and AC conductivity(σ_(ac)).The main objective is the investigation of the dieletric properties of the prepared samples at the low weight percentage of the filler at different temperatures and frequencies.From the two mechanisms of electrical conduction,first the leakage current obtained by the formation of a percolation network in the matrix and the other by tunneling of electrons formed among conductors nearby(tunneling current);here we are getting conduction by the second mechanism.Generally,leakage current makes more contribution to conductivity than tunneling current.Dielectric dissipation factor at 250 Hz frequency is greater than all other frequencies and starts increasing from 60℃.The peak height of the transition temperature decreases with increasing frequency.This study shows that the addition of a low weight percentage of MWCNT can modify considerably the electrical behavior of epoxy nanocomposites without chemical functionalization of fller.
基金supported by the NBIT Program funded jointly by the Ministry of Science and Technology of Korea and the US Air Force Office of Scientific Research.Dr.Z.Guo appreciatessupport from the National Science Foundation-Nanoscale Interdisciplinary Research Team(NIRT)Materials Processing and Manufacturing(CMMI 10-30755)。
文摘Epoxy resin nanocomposites reinforced with three different ionic liquid functionalized carbon nanotubes(f-CNTs)were fabricated by an in situ polymerization method.The influence of the anions on the curing process was studied through differential scanning calorimetry(DSC)and normalized Fourier transform infrared(FTIR)spectroscopy.The composition of the nanocomposites was analyzed by X-ray photoelectron spectroscopy.Two different mechanisms are proposed to explain the curing process of the neat epoxy and its composites.The electric conductivity and mechanical properties of the nanocomposites are also reported.The tensile strength was increased dramatically due to the insertion of f-CNTs.Scanning electron microsopy fracture surface analysis indicates a strong interfacial bonding between the carbon nanotubes and the polymer matrix.