期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
1
作者 Xintao Wu Chengcheng Li +7 位作者 Ziqi Zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin Zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Lamellar water induced quantized interlayer spacing of nanochannels walls
2
作者 Yue Zhang Chenlu Wang +3 位作者 Chunlei Wang Yingyan Zhang Junhua Zhao Ning Wei 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期356-365,共10页
The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of... The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of restricted spaces on the properties of confined fluids.However,the situation of channel-wall is crucial but attracts less attention and remains unknown.To fundamentally understand the mechanism of channel-walls in nanoconfinement,we investigated the interaction between the counter-force of the liquid and interlamellar spacing of nanochannel walls by considering the effect of both spatial confinement and surface wettability.The results reveal that the nanochannel stables at only a few discrete spacing states when its confinement is within 1.4 nm.The quantized interlayer spacing is attributed to water molecules becoming laminated structures,and the stable states are corresponding to the monolayer,bilayer and trilayer water configurations,respectively.The results can potentially help to understand the characterized interlayers spacing of graphene oxide membrane in water.Our findings are hold great promise in design of ion filtration membrane and artificial water/ion channels. 展开更多
关键词 NANOCONFINEMENT Quantized spacing Lamellar water layer MD simulations Entropy force
下载PDF
Constant charge method or constant potential method:Which is better for molecular modeling of electrical double layers?
3
作者 Liang Zeng Xi Tan +5 位作者 Xiangyu Ji Shiqi Li Jinkai Zhang Jiaxing Peng Sheng Bi Guang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期54-60,共7页
In molecular modeling of electrical double layers(EDLs),the constant charge method(CCM)is prized for its computational efficiency but cannot maintain electrode equipotentiality like the more resourceintensive constant... In molecular modeling of electrical double layers(EDLs),the constant charge method(CCM)is prized for its computational efficiency but cannot maintain electrode equipotentiality like the more resourceintensive constant potential method(CPM),potentially leading to inaccuracies.In certain scenarios,CCM can yield results identical to CPM.However,there are no clear guidelines to determine when CCM is sufficient and when CPM is required.Here,we conduct a series of molecular simulations across various electrodes and electrolytes to present a comprehensive comparison between CCM and CPM under different charging modes.Results reveal that CCM approximates CPM effectively in capturing equilibrium EDL and current-driven dynamics in open electrode systems featuring ionic liquids or regular concentration aqueous electrolytes,while CPM is indispensable in scenarios involving organic and highly concentrated aqueous electrolytes,nanoconfinement effects,and voltage-driven dynamics.This work helps to select appropriate methods for modeling EDL systems,prioritizing accuracy while considering computationalefficiency. 展开更多
关键词 Electrochemical interface Molecular dynamics Electrode polarization modeling Nanoconfinement effect
下载PDF
Enhanced reversible hydrogen storage properties of wrinkled graphene microflowers confined LiBH_(4) system with high volumetric hydrogen storage capacity
4
作者 Zhenglong Li Kaicheng Xian +9 位作者 Hao Chen Mingxia Gao Shanqing Qu Meihong Wu Yaxiong Yang Wenping Sun Chao Gao Yongfeng Liu Xin Zhang Hongge Pan 《Materials Reports(Energy)》 EI 2024年第1期79-88,共10页
LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nan... LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility.Besides,graphene can serve as supporting materials for LiBH_(4)catalysts and also destabilize LiBH_(4)via interfacial reaction.However,graphene has never been used alone as a frame material for nanoconfining LiBH_(4).In this study,graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH_(4),and the nanoconfinement effect of graphene was revealed.After loading 70 wt%of LiBH_(4) and mechanically compressed at 350 MPa,8.0 wt% of H2 can be released within 100 min at 320C,corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L^(-1)ever reported.Thanks to the nanoconfinement of graphene,the rate-limiting step of dehydrogenation of nanoconfined LiBH_(4) was changed and its apparent activation energy of the dehydrogenation(107.3 kJ mol^(-1))was 42%lower than that of pure LiBH_(4).Moreover,the formation of the intermediate Li_(2)B_(12)H_(12) was effectively inhibited,and the stable nanoconfined structure enhanced the reversibility of LiBH_(4).This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials. 展开更多
关键词 Hydrogen storage LiBH_(4) NANOCONFINEMENT GRAPHENE High capacity
下载PDF
A new association state of solutes in nanoconfined aqueous solutions
5
作者 YuSong Tu Liang Zhao HaiPing Fang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第11期28-35,共8页
Recently, we have found a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, where solutes exhibit distinct behavior in a new a... Recently, we have found a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, where solutes exhibit distinct behavior in a new association state from that in the dispersion and aggregation states observed usually in macroscopic systems. However, it remains unknown whether this new association state of solute molecules found in nanoconfined systems would vanish with the system size increasing and approaching the macroscopic scale. Here, we achieve the phase diagram of solute association states by making the analyses of Gibbs free energy of solutes in nanoconfined aqueous solutions in detail. In the phase diagram, we observe a closed regime with a finite system size of nanoconfined aqueous solutions and a solute concentration range, only in which there exists the new association state of solutes with the reversible transition between the aggregation and dispersion states, and there indeed exists an upper limit of the system size for the new association state, around several tens nanometers. These findings regarding the intimate connection between the system size and the solute association behavior provides the comprehensive understanding of the association dynamics of solutes in nanoconfined environment. 展开更多
关键词 solute association states reversible transition nanoconfined aqueous solutions free energy barrier
原文传递
A Molecular Analysis of Critical Factors for Interface and Size Effects on Heat Conduction in Nanoconfined Water Film
6
作者 JIN Lu ZHOU Leping DU Xiaoze 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第4期1155-1166,共12页
Heat conduction of nanoconfined liquid may differ from its bulk because of the effects of size,geometry,interface,temperature,etc.In this study,the roles of some critical factors for the heat conduction of nanoconfine... Heat conduction of nanoconfined liquid may differ from its bulk because of the effects of size,geometry,interface,temperature,etc.In this study,the roles of some critical factors for the heat conduction of nanoconfined water film are systematically analyzed by using the molecular dynamics method.With decreasing thickness,the normal thermal conductivity of nanoconfined water film between two copper plates decreases exponentially,while the thermal resistance,peak of the radial distribution function,and atomistic heat path increase exponentially.The average bond order,radial distribution function,mean squared displacement,and vibrational density of states are calculated to analyze the effects of structure,distribution,molecular diffusion,and vibration of water molecules on heat conduction especially in a region having no oxygen atoms(which is observed by the near-wall density profile).The results show that phonon scattering is dominant for determining the reduced thermal conductivity in this near-wall region.The thermal conductivity ratio of confined water film to bulk water has a roughly linear relationship with the logarithm of the proportion of the near-wall region.Moreover,the high interfacial thermal resistance is positively correlated to the film thickness,but it has a negligible impact on heat conduction.This work provides insights into the contribution of water molecules near the solid/liquid interface to the heat conduction of nanoconfined liquid for process intensification. 展开更多
关键词 near-wall region molecular dynamics study thermal conductivity interfacial thermal resistance nanoconfined liquid
原文传递
Particle-Wave Dualism in Nanoconfined Space:Ultrafast Substance Flow
7
作者 GAO Pengcheng MA Qun +4 位作者 LIU Rui LOU Xiaoding HUANG Yu ZHANG Baocheng XIA Fan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第4期957-960,共4页
Many researchers,however,found that(1)the flow of both liquid and gas through nanoscale pores is one to even seven orders of magnitude faster than that would be predicted from the classic Newton’s mechanic theories,s... Many researchers,however,found that(1)the flow of both liquid and gas through nanoscale pores is one to even seven orders of magnitude faster than that would be predicted from the classic Newton’s mechanic theories,such as the Hagen-Poiseuille equation,the Bernoulli’s principle,the Knudsen theory;(2)the seeming contradiction that K+channels conduct K+ions at maximal throughput rates while not permeating slightly smaller Na+ions,which have perplexed scientists for decades.Herein we propose a possible explanation for the above phenomena based on the Wave-Particle Dualism.The quantum effect on ultrafast flow could possibly provide a new perspective for studying the nature of the ion and molecule channels,which are the backbones for the biology,and possibly promote the development of new methods for energy conversion,desalination of sea water and even information systems. 展开更多
关键词 Ultrafast transport nanoconfined space Particle-Wave Dualism
原文传递
Recent advances in the nanoconfinement of Mg-related hydrogen storage materials:A minor review 被引量:4
8
作者 Jingjing Zhang Bing Zhang +7 位作者 Xiubo Xie Cui Ni Chuanxin Hou Xueqin Sun Xiaoyang Yang Yuping Zhang Hideo Kimura Wei Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期14-24,共11页
Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of ... Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement. 展开更多
关键词 magnesium-based materials hydrogen storage NANOCONFINEMENT carbon materials
下载PDF
A transient model integrating the nanoconfinement effect and pore structure characteristics of oil transport through nanopores
9
作者 Cheng Cao Bin Chang +1 位作者 Zhao Yang Chao Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3461-3477,共17页
Understanding the integrated transport behavior of oil in shale nanopores is critical to efficient shale oil development. In this paper, based on the time-dependent Poiseuille flow momentum equation, we present a nove... Understanding the integrated transport behavior of oil in shale nanopores is critical to efficient shale oil development. In this paper, based on the time-dependent Poiseuille flow momentum equation, we present a novel transient model to describe oil transport in unsteady and steady states. The model incorporates the effect of the critical shift density, apparent viscosity, slip length, and alkane property, as well as pore tortuosity and surface roughness. We evaluated our model through a comparison with other models, experiments, and molecular dynamics simulations. The results show that the development rates of the volume flows of C_(6)–C_(12) alkane confined in inorganic nanopores and C_(12) alkane confined in organic nanopores were faster than that of the corresponding bulk alkane. In addition, the critical drift density positively promoted the volume flow development rate in the unsteady state and negatively inhibited the mass flow rate in the steady state. This effect was clearest in pores with a smaller radius and lower-energy wall and in alkane with shorter chain lengths. Furthermore, both the nanoconfinement effect and pore structure determined whether the volume flow enhancement rate was greater than or less than 1. The rate increased or decreased with time and was controlled mainly by the nanoconfinement effect. Moreover, as the wall energy increased, the flow inhibition effect increased;as the carbon number of alkane increased, the flow promotion effect increased. The results indicate that the proposed model can accurately describe oil transport in shale nanopores. 展开更多
关键词 NANOPORES Transient transport Nanoconfinement effect TORTUOSITY ROUGHNESS Allkane properties
下载PDF
利用商用凝胶型离子交换树脂实现超微纳米颗粒的大规模生产与高效水处理
10
作者 程思凯 钱杰书 +2 位作者 张孝林 鲁振达 潘丙才 《Engineering》 SCIE EI CAS CSCD 2023年第4期149-156,M0007,共9页
纳米技术为深度水处理提供了新的机遇。然而,高活性超微(<5 nm)纳米颗粒材料的大规模生产仍存在挑战,且超微材料在实际水处理中也存在操作困难等问题,阻碍了纳米技术在水污染控制领域的推广应用。针对这些问题,我们提出了一种简便的... 纳米技术为深度水处理提供了新的机遇。然而,高活性超微(<5 nm)纳米颗粒材料的大规模生产仍存在挑战,且超微材料在实际水处理中也存在操作困难等问题,阻碍了纳米技术在水污染控制领域的推广应用。针对这些问题,我们提出了一种简便的解决方法,即以商用凝胶型离子交换树脂N201为载体合成超微纳米颗粒。N201是一种季铵化的毫米级聚(苯乙烯二乙烯基苯共聚)小球。在N2O1中通过简单的浸渍-沉淀获得了水合氧化铁(HFO)、水合氧化锰(HMO)、硫化镉(CdS)和零价铁(ZVI)等纳米颗粒,所有纳米颗粒的尺寸都小于5 nm。中试生产表明该合成方法可方便放大,并制备了大量亚5 nm HFO颗粒。关于超微纳米颗粒的合成机理,我们认为在每个在水中溶胀的N201小球内都包含连续均匀水相,使反应物可快速地扩散到树脂球内部(7 s内从小球表面扩散到中心),从而实现纳米颗粒的爆发成核,形成超窄尺寸分布的晶核。此外,交联聚合物链间还可形成狭窄的孔隙(直径<5 nm),可防止在其中形成的纳米颗粒过度生长。由于N201载体具有毫米级尺寸,所制备复合的纳米材料可方便用于连续流装置中。批次实验和柱吸附测试表明,超微HFO颗粒对As(Ⅲ/Ⅴ)的吸附性能比约17 nm的HFO显著增强。本研究有望进一步促进纳米技术在实际水处理中的推广应用。 展开更多
关键词 Nanoscale effect NANOCONFINEMENT ADSORPTION Inner-sphere complex REGENERATION
下载PDF
Affinity-Engineered Flexible Scaffold toward Energy-Dense, Highly Reversible Na Metal Batteries
11
作者 Yujie Liu Miao Bai +7 位作者 Dou Du Xiaoyu Tang Helin Wang Min Zhang Ting Zhao Fu Liu Zhiqiao Wang Yue Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期344-352,共9页
The practical deployment of metallic anodes in the energy-dense batteries is impeded by the thermodynamically unstable interphase in contact with the aprotic electrolyte,structural collapse of the substrates as well a... The practical deployment of metallic anodes in the energy-dense batteries is impeded by the thermodynamically unstable interphase in contact with the aprotic electrolyte,structural collapse of the substrates as well as their insufficient affinity toward the metallic deposits.Herein,the mechanical flexible,lightweight(1.2 mg cm^(−2))carbon nanofiber scaffold with the monodispersed,ultrafine Sn_(4)P_(3) nanoparticles encapsulation(Sn_(4)P_(3)NPs@CNF)is proposed as the deposition substrate toward the high-areal-capacity sodium loadings up to 4 mAh cm^(−2).First-principles calculations manifest that the alloy intermediates,namely the Na_(15)Sn_(4) and Na_(3)P matrix,exhibit the intimate Na affinity as the“sodiophilic”sites.Meanwhile,the porous CNF regulates the heterogeneous alloying process and confines the deposit propagation along the nanofiber orientation.With the precise control of pairing mode with the NaVPO4F cathode(8.7 mg cm^(−2)),the practical feasibility of the Sn_(4)P_(3) NPs@CNF anode(1^(*)Na excess)is demonstrated in 2 mAh single-layer pouch cell prototype,which achieves the 95.7%capacity retention for 150 cycles at various mechanical flexing states as well as balanced energy/power densities. 展开更多
关键词 energy-dense prototype flexible sodium metal batteries heterogeneous alloying nanoconfinement effect Sn4P3 nanocrystalline
下载PDF
Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance 被引量:2
12
作者 Yumeng Zhang Yudan Zhu +4 位作者 AnranWang Qingwei Gao Yao Qin Yaojia Chen Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第6期1403-1415,共13页
In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fund... In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems. 展开更多
关键词 Process INTENSIFICATION nanoconfined FLUID Interface Complex fluids Micro structure MOLECULAR SIMULATION
下载PDF
Oxygen Vacancy-Rich 2D TiO_(2) Nanosheets:A Bridge Toward High Stability and Rapid Hydrogen Storage Kinetics of Nano-Confined MgH_(2) 被引量:9
13
作者 Li Ren Wen Zhu +5 位作者 Yinghui Li Xi Lin Hao Xu Fengzhan Sun Chong Lu Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期79-94,共16页
MgH_(2) has attracted intensive interests as one of the most promising hydrogen storage materials.Nevertheless,the high desorption temperature,sluggish kinetics,and rapid capacity decay hamper its commercial applicati... MgH_(2) has attracted intensive interests as one of the most promising hydrogen storage materials.Nevertheless,the high desorption temperature,sluggish kinetics,and rapid capacity decay hamper its commercial application.Herein,2D TiO_(2) nanosheets with abundant oxygen vacancies are used to fabricate a flower-like MgH_(2)/TiO_(2) heterostructure with enhanced hydrogen storage performances.Particularly,the onset hydrogen desorption temperature of the MgH_(2)/TiO_(2) heterostructure is lowered down to 180℃(295℃ for blank MgH_(2)).The initial desorption rate of MgH_(2)/TiO_(2) reaches 2.116 wt% min^(-1) at 300℃,35 times of the blank MgH_(2) under the same conditions.Moreover,the capacity retention is as high as 98.5% after 100 cycles at 300℃,remarkably higher than those of the previously reported MgH_(2)-TiO_(2) composites.Both in situ HRTEM observations and ex situ XPS analyses confirm that the synergistic effects from multi-valance of Ti species,accelerated electron transportation caused by oxygen vacancies,formation of catalytic Mg-Ti oxides,and stabilized MgH_(2) NPs confined by TiO_(2) nanosheets contribute to the high stability and kinetically accelerated hydrogen storage performances of the composite.The strategy of using 2D substrates with abundant defects to support nano-sized energy storage materials to build heterostructure is therefore promising for the design of high-performance energy materials. 展开更多
关键词 Hydrogen storage MgH_(2) TiO_(2)nanosheets Oxygen vacancies NANOCONFINEMENT
下载PDF
Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction 被引量:4
14
作者 Jinxin Wei Yawen Chen +2 位作者 Hongyang Zhang Zanyong Zhuang Yan Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期78-86,共9页
Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and... Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications. 展开更多
关键词 Pore-size Effect NANOCONFINEMENT Hierarchically porous MOFs NPs/MOFs NANOCAGE
下载PDF
Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal anode 被引量:1
15
作者 Juhee Yoon Seongbak Moon +3 位作者 Son Ha Hyung-Kyu Lim Hyoung-Joon Jin Young Soo Yun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期121-127,I0005,共8页
Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deli... Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes. 展开更多
关键词 Nanoconfinement effect Nanoporous carbon Ionic liquid electrolyte Metal anode Aluminum batteries Multivalent batteries
下载PDF
A review on nanoconfinement engineering of red phosphorus for enhanced Li/Na/K-ion storage performances
16
作者 Yuanyuan Sun Fanyou Zeng +2 位作者 Yukun Zhu Ping Lu Dongjiang Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期531-552,I0014,共23页
Secondary batteries are widely used in energy storage equipment.To obtain high-performance batteries,the development and utilization of electrode materials with cheap price and ideal theoretical gravimetric and volume... Secondary batteries are widely used in energy storage equipment.To obtain high-performance batteries,the development and utilization of electrode materials with cheap price and ideal theoretical gravimetric and volumetric specific capacities have become particularly important.Naturally abundant and low-cost red phosphorus(RP)is recognized as an anode material with great promise because it has a theoretical capacity of 2596 mA h g^(-1) in lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs).However,owing to the inferior discharging,the capacity of pure RP has a fast decay.Nanoconfinement of RP nanoparticles within porous carbon framework is one of the efficient methods to overcome these problems.In this review,we introduce the recent progress of RP confinement into carbon matrix as an energy storage anode material in LIBs,SIBs and potassium-ion batteries(PIBs).The synthetic strategies,lithiation/sodia tion/potassiation mechanism,and the electrochemical performances of RP/carbon composites(RP/C)with kinds of designed structures and P-C and P-O-C bond by kinds of methods are included.Finally,the challenges and perspectives of RP faced in the application development as anodes for LIBs/SIBs/PIBs are covered.This review will strengthen the understanding of composites of RP nanoparticles in porous carbon materials and aid researchers to carry out future work rationally. 展开更多
关键词 Red phosphorus Anodes NANOCONFINEMENT Carbon materials Energy storage
下载PDF
Molecular insights on Ca^(2+)/Na+separation via graphene-based nanopores:The role of electrostatic interactions to ionic dehydration
17
作者 Yumeng Zhang Yingying Zhang +7 位作者 Xueling Pan Yao Qin Jiawei Deng Shanshan Wang Qingwei Gao Yudan Zhu Zhuhong Yang Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期220-229,共10页
Ca^(2+)/Na+separation is a common problem in industrial applications,biological and medical fields.However,Ca^(2+)and Na+have similar ionic radii and hydration radii,thus Ca^(2+)/Na+separation is challenging.Inspired ... Ca^(2+)/Na+separation is a common problem in industrial applications,biological and medical fields.However,Ca^(2+)and Na+have similar ionic radii and hydration radii,thus Ca^(2+)/Na+separation is challenging.Inspired by biological channels,group modification is one of the effective methods to improve the separation performance.In this work,molecular dynamics simulations were performed to investigate the effects of different functional groups(COO,NH3+)on the separation performance of Ca^(2+)and Na+through graphene nanopores under an electric field.The pristine graphene nanopore was used for comparison.Results showed that three types of nanopores preferred Ca^(2+)to Na+,and Ca^(2+)/Na+selectivity followed the order of GE-COO(4.06)>GE(1.85)>GE-NH3+(1.63).Detailed analysis of ionic hydration microstructure shows that different nanopores result in different hydration factors for the second hydration layer of Ca^(2+)and the first layer of Na+.Such different hydration factors corresponding to the dehydration ability can effectively evaluate the separation performance.In addition,the breaking of hydrogen bonds between water molecules due to electrostatic effects can directly affect the dehydration ability.Therefore,the electrostatic effect generated by group modification will affect the ionic hydration microstructure,thus reflecting the differences in dehydration ability.This in turn affects the permeable and separation performance of cations.The results of this work provide perceptive guidelines for the application of graphene-based membranes in ion separation. 展开更多
关键词 SEPARATION Microstructure Molecular simulation Modified graphene nanopores METAL-IONS NANOCONFINEMENT
下载PDF
Bioinspired ionic control for energy and information flow
18
作者 Puguang Peng Han Qian +2 位作者 Jiajin Liu Zhonglin Wang Di Wei 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期198-221,共24页
The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient ... The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface. 展开更多
关键词 lontronics nanoconfined ion transport ion dynamics bioinspired iontronics ionic-electronic coupling interface
原文传递
Semiempirical equations of state of H_(2)O/CO_(2) binary mixtures in graphite nanoslits 被引量:2
19
作者 Haoxuan Li Bin Zhao +1 位作者 Chengzhen Sun Bofeng Bai 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第8期83-92,共10页
The existence of confining walls limits the prediction accuracy of nanoconfined fluids using macroscopic equations of state(EOSs);moreover,appropriate EOSs for multicomponent mixture fluids in nanoconfined spaces are ... The existence of confining walls limits the prediction accuracy of nanoconfined fluids using macroscopic equations of state(EOSs);moreover,appropriate EOSs for multicomponent mixture fluids in nanoconfined spaces are missing.Here,we derive the EOS of multicomponent mixture fluids confined in nanospaces at high temperatures and pressures,mainly considering the nanoconfinement effect and the competitive adsorption effect between different components.Then,the EOSs are validated through comparison with the molecular dynamics-simulated Pv T data of CO_(2)/H_(2)O mixtures in graphite nanoslits.To consider the above effects,we derive two EOSs via two modeling methods:EOS I is obtained through modification of the actual component occupation volume in the Peng-Robinson equation of state(PR EOS)by fitting the binary component interaction coefficient and the number of adsorbed molecules according to a selectivity coefficient,while EOS II is obtained by considering the decreased pressure of the fluids in PR EOS by adding an attractive term between components and walls.With the simulation results as a benchmark,the two EOSs exhibited good prediction accuracies under low CO_(2) concentrations,and generally,EOS II was more accurate than EOS I.This study fills the gap in the EOSs of nanoconfined mixture fluids,and the obtained equations can help to further describe the thermodynamic properties of confined mixture fluids. 展开更多
关键词 confined fluid mixtures equation of state nanoconfined spaces molecular dynamics simulation
原文传递
Cement-and-pebble nanofluidic membranes with stable acid resistance as osmotic energy generators 被引量:1
20
作者 Yifei Zhao Weiwen Xin +6 位作者 Yongchao Qian Zhehua Zhang Yadong Wu Xiangbin Lin Xiang-Yu Kong Lei Jiang Liping Wen 《Science China Materials》 SCIE EI CAS CSCD 2022年第10期2729-2736,共8页
Osmotic energy between river water and seawater has attracted interest as a new source of sustainable energy.Nanofluidic membranes in a reverse electrodialysis configuration can capture energy from salinity gradients.... Osmotic energy between river water and seawater has attracted interest as a new source of sustainable energy.Nanofluidic membranes in a reverse electrodialysis configuration can capture energy from salinity gradients.However,current membrane materials suffer from high resistances,low stabilities,and low charge densities,which limit their further application.Here,we designed a high-performance nanofluidic membrane using carboxylic cellulose nanofibers functionalized with graphene oxide nanolamellas with cement-and-pebble microstructures and stable skeletons for enhanced ion transmembrane transport.By mixing artificial river water and seawater,the composite membrane achieved a high output power density up to 5.26 W m^(−2).Additionally,the membrane had an excellent acid resistance,which enabled long-term use with over 67 W m^(−2) of power density.The performance of this composite membrane benefited from the mechanically strong cellulose fibers and the bonding between nanofibers and nanolamellas.In this work,we highlight promising directions in industrial waste treatment using energy extracted from chemical potential gradients. 展开更多
关键词 cement-and-pebble membrane ion transport osmotic energy conversion nanoconfined fluidic channels chargedriven ion diffusion
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部