Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of ...Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2.V ^-1 .s^-1, which indicates their potential applications in future nano-devices.展开更多
基金Project supported by the National Basic Research Program of China (Grant No.2013CB632101)the National Natural Science Foundation of China (Grant Nos.11274155 and 61036001)Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Province,China
文摘Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2.V ^-1 .s^-1, which indicates their potential applications in future nano-devices.