期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
STUDY ON PREPARATION OF CERAMIC MATRIX COMPOSITE OF WC-Co ULTRAFINE POWDERS 被引量:1
1
作者 曹立宏 时东霞 +1 位作者 欧阳世翕 关波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1995年第2期40-46,共7页
The W -Co compound precursor powders with an average particle sife of 60 nm were prepared by the chemical coprecipitation as the raw materials of Na2WO1 and CoCl2 and as the reagents of HCI and NH3 ?H2O. After re-duci... The W -Co compound precursor powders with an average particle sife of 60 nm were prepared by the chemical coprecipitation as the raw materials of Na2WO1 and CoCl2 and as the reagents of HCI and NH3 ?H2O. After re-ducing and carburizing the precursor powders by hydrogen gas and CO-CO 2 mixture gas. the WC-Co composite povvders ivith an average particle size of 0. 18/wi can be obtained. The purity and particle size of powders -were analysed by XRD and TEM. respectively. Meanwhile, the key factors to influ-ence the reducing and carburizing process of powders were also studied. 展开更多
关键词 wc-co ceramic matrix composite ul-trafine powders
下载PDF
Study on the diamond/ultrafine WC-Co cermets interface formed in a SPS consolidated composite 被引量:1
2
作者 SHI Xiaoliang SHAO Gangqin DUAN Xinglong YUAN Runzhang 《Rare Metals》 SCIE EI CAS CSCD 2006年第2期150-155,共6页
Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide co... Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide composite materials. The interface microstructures between coated tungsten diamond and WC-Co cemented carbide matrix were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The results showed that there is a transitional layer between the diamond and the matrix, in which the carbon content is 62.97wt.%, and the content of cobalt in the transitional zone is 6.19wt.%; the content of cobalt in the WC-Co cemented carbide matrix is 6.07wt.%, in which the carbon content is 15.95wt.%, and the content of cobalt on the surface of diamond is 7.30wt.%, in which the carbon content is 80.38wt.%. The transitional zone prevents the carbon atom of the diamond from spreading to the matrix, in which the carbon content does coincide with the theoretical value of the raw nanocomposite powders, and the carbon content forms a graded distribution among the matrix, transitional zone, and the surface of diamond; after the 1280℃ SPS consolidated process the diamond still maintains a very good crystal shape, the coated tungsten on the surface of the diamond improves thermal stability of the diamond and increases the bonding strength of the interface between the diamond and the matrix. 展开更多
关键词 DIAMOND nanocrystalline wc-co composite powders INTERFACE spark plasma sintering
下载PDF
喷雾干燥与低温还原碳化法制备纳米晶WC-Co复合粉末 被引量:14
3
作者 吕健 羊建高 +3 位作者 陈颢 郭圣达 戴煜 朱二涛 《粉末冶金材料科学与工程》 EI 北大核心 2013年第6期835-839,共5页
传统的纳米WC-Co复合粉末制备通常是将超细WC粉和Co粉在高能球磨机中进行研磨破碎得到,粉末形状不规则,成分、粒度分布不均匀,容易掺杂,难于满足大批量工业化生产。以偏钨酸铵(AMT)、可溶性钴盐、有机碳源为原材料,采用喷雾干燥... 传统的纳米WC-Co复合粉末制备通常是将超细WC粉和Co粉在高能球磨机中进行研磨破碎得到,粉末形状不规则,成分、粒度分布不均匀,容易掺杂,难于满足大批量工业化生产。以偏钨酸铵(AMT)、可溶性钴盐、有机碳源为原材料,采用喷雾干燥、煅烧、低温还原碳化工艺制备纳米晶 WC-Co 复合粉末。对粉末进行碳含量、氧含量、松装密度测定以及形貌观察和物相分析。结果表明:WC-Co复合粉末外观多呈空壳球形骨架结构, Co对WC晶粒形成纳米级包覆,各成分分布均匀,一次颗粒尺寸在100~200 nm之间。粉末具有流动性好、晶粒细小且均匀等特点,适用于制备超细硬质合金,在堆焊和喷涂领域有广阔的应用前景。 展开更多
关键词 纳米晶WC—Co复合粉 喷雾干燥 低温还原碳化
下载PDF
Abrasion Resistance Enhancement of Ultrafine-structured WC-Co Coating Fabricated by using in situ Synthesized Composite Powder 被引量:7
4
作者 Haibin Wang Xiaoyan Song +2 位作者 Chongbin Wei Yang Gao Guangsheng Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第11期1067-1073,共7页
The ultrafine WC-Co composite powder was synthesized by a newly developed rapid route based on in situ reactions. By using the as-synthesized composite powder, the granulation processing was then carried out to prepar... The ultrafine WC-Co composite powder was synthesized by a newly developed rapid route based on in situ reactions. By using the as-synthesized composite powder, the granulation processing was then carried out to prepare the ultrafine-structured thermal spraying feedstock. The influences of the heat-treatment process on density of the feedstock powder, phase constitution and wear resistance of the resultant WC-Co coatings fabricated by high velocity oxy-fuel (HVOF) were investigated. The results showed that increasing the heating temperature and extending the holding time leaded to remarkable increase in the density and flowability of the feedstock powder. As a result, the decarburization of the in-flight particles could be decreased and the wear resistance of coating was significantly enhanced. The present study demonstrated that the developed techniques for the ultrafine powder and its thermal-sprayed coatings had very promising applications in scaling up to produce ultrafine-structured cermet coatings with excellent performance. 展开更多
关键词 wc-co composite powder DECARBURIZATION Density Ultrafine-structured coating Abrasion resistance
原文传递
机械合金化制备Cu-C纳米晶复合粉末 被引量:6
5
作者 王德宝 吴玉程 +1 位作者 王文芳 宗跃 《武汉理工大学学报》 EI CAS CSCD 北大核心 2007年第10期131-133,136,共4页
研究了不同碳含量的铜-碳混合粉末在机械合金化(MA)过程中组织形态特征及微观结构的变化规律。结果表明:粉末X射线衍射图谱的宽度和强度均随着球磨时间的延长逐渐加宽和降低,这是晶粒细化和晶格畸变共同作用的结果。随着机械合金化的进... 研究了不同碳含量的铜-碳混合粉末在机械合金化(MA)过程中组织形态特征及微观结构的变化规律。结果表明:粉末X射线衍射图谱的宽度和强度均随着球磨时间的延长逐渐加宽和降低,这是晶粒细化和晶格畸变共同作用的结果。随着机械合金化的进行,粉末的晶粒度逐渐减小,而晶格常数和畸变则不断增加。不同碳含量的铜-碳混合粉末经过24 h高能球磨后均可形成纳米级的铜基过饱和固溶体。机械合金化导致复合粉末晶粒的细化、晶界、亚晶界以及位错等晶体缺陷密度的增加是形成过饱和固溶体的主要原因。 展开更多
关键词 机械合金化 铜-碳纳米晶复合粉末 显微结构 过饱和固溶体
下载PDF
PREPARATION OF WC-Co POWDER BY DIRECT REDUCTION AND CARBONIZATION 被引量:5
6
作者 Zhonglai Yi Gangqin Shao Xinglong Duan Peng Sun Xiaoliang Shi Zhen Xiong Jingkun Guo 《China Particuology》 SCIE EI CAS CSCD 2005年第5期286-288,共3页
A new approach to produce superfine WC-Co powder by direct reduction and carbonization is proposed. Water-soluble salts containing W and Co were used as raw materials. Tungsten and cobalt oxide powder (CoWO4/WO3) wa... A new approach to produce superfine WC-Co powder by direct reduction and carbonization is proposed. Water-soluble salts containing W and Co were used as raw materials. Tungsten and cobalt oxide powder (CoWO4/WO3) was first formed by a spray-pyrolysis technique, which was then mixed with carbon black and converted to WC-Co composite powder at 950℃ for 4 h in N2 atmosphere. The resulting powder has a particle size of 100-300 nm. 展开更多
关键词 tungsten carbide-cobalt wc-co direct reduction and carbonization composite powder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部