The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo...The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.展开更多
The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(...The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.展开更多
The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the ...The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots (QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its comer. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.展开更多
Plasmonic nanocubes are ideal candidates in realizing controllable reflectance surfaces, unidirectional nanoantennas and other plasmon-associated applications. In this work, we perform full-wave calculations of the op...Plasmonic nanocubes are ideal candidates in realizing controllable reflectance surfaces, unidirectional nanoantennas and other plasmon-associated applications. In this work, we perform full-wave calculations of the optical forces in threedimensional gold nanocube dimers. For a fixed center-to-center separation, the rotation of the plasmonic nanocube leads to a slight shift of the plasmonic resonance wavelength and a strong change in the optical binding forces. The effective gap and the near field distribution between the two nanocubes are shown to be crucial to this force variation. We further find that the optical binding force is dominated by the scattering process while the optical forces in the wavevector direction are affected by both scattering and absorption, making the former relatively more sensitive to the rotation of(an effective gap between) the nanocubes. Our results would be useful for building all-optically controllable meta-surfaces.展开更多
In this paper, for the first time, we report the synthesis of nanoscale cuprous chloride(Cu Cl) cubic structure by a facile hydrothermal route. A possible mechanism for the growth of those nanostructures is proposed b...In this paper, for the first time, we report the synthesis of nanoscale cuprous chloride(Cu Cl) cubic structure by a facile hydrothermal route. A possible mechanism for the growth of those nanostructures is proposed based on the experimental results. It is discovered that the existence of HCl could affect the surface of Cu Cl nanocubes. This unique cube-like nanostructure with rough surface significantly enhances the electroactive surface areas of Cu Cl, leading to a high special capacitance of 376 m F cm-2at the current density of 1.0 m A cm-2. There is still a good reversibility with cycling efficiency of 88.8 % after 2,000 cycles, demonstrating its excellent long-term cycling stability and might be the promising candidates as the excellent electrode material.展开更多
Porous Zn–Sn–O nanocubes with a uniform size were synthesized through a facile aqueous solution route combined with subsequent thermal treatment. The chemical composition, morphology, and microstructure of Zn–Sn–O...Porous Zn–Sn–O nanocubes with a uniform size were synthesized through a facile aqueous solution route combined with subsequent thermal treatment. The chemical composition, morphology, and microstructure of Zn–Sn–O nanocubes, which have significant effects on the lithium storage performances, were easily tuned by adjusting the calcination temperature in preparation processes of ZnSn(OH)6solid nanocubes. Further studies revealed that porous Zn–Sn–O nanocubes prepared at 600 °C exhibited a good rate capability and a high reversible capacity of 700 m Ah g^(-1)at a current density of 200 m Ag^(-1)after 50 cycles, which may be a great potential as anode materials in Lithium-ion batteries.展开更多
The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanoc...The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanocubes of different sizes were synthesized by an improved polyol method.With addition of HCl solution,Ag nanocubes with size about 100 nm were obtained under an air atmosphere.And Ag nanocubes with size around50 nm can be produced in a short time under Argon atmosphere with the presence of NaHS instead of HCl.Meanwhile,uniform Ag nanocubes with size larger than 100 nm were also synthesized successfully via adjusting experiment parameters.Results of transmission electron microscopy(TEM)combined with selected area electron diffraction(SAED)show that the Ag nanocubes are single crystalline with six(200)surface plane.In the UV-Vis-NIR optical absorption spectrum,the diple moment resonance absorption peak is changed in the range of 420—500nm with the increase of Ag nanocubes size.展开更多
Designing the highly catalytic activity and durable bifunctional catalysts toward oxygen reduction/evolution reaction(ORR/OER) is paramount for metal–air batteries. Metal–organic frameworks(MOFs)-based materials hav...Designing the highly catalytic activity and durable bifunctional catalysts toward oxygen reduction/evolution reaction(ORR/OER) is paramount for metal–air batteries. Metal–organic frameworks(MOFs)-based materials have attracted a great deal of attention as the potential candidate for effectively catalyzing ORR/OER due to their adjustable composition and porous structure. Herein, we first introduce the Mn species into zeolitic-imidazole frameworks(ZIFs) and then further pyrolyze the Mn-containing bimetallic ZIFs to synthesize core-shell-structured Co@Co4N nanoparticles embedded into MnO-modified porous N-doped carbon nanocubes(Co@Co4N/MnO–NC). Co@Co4N/MnO–NC exhibits the outstanding catalytic activity toward ORR and OER which is attributed to its abundant pyridinic/graphitic N and Co4N,the optimized content of MnO species, highly dispersed catalytic sites and porous carbon matrix. As a result, the Co@Co4N/MnO–NC-based Zn–air battery exhibits enhanced performances, including the high discharge capacity(762 mA h gZn-1), large power density(200.5 mW cm-2), stable potential profile over 72 h, low overpotential(<1.0 V) and superior cycling life(2800 cycles). Moreover, the belt-shaped Co@Co4N/MnO–NC cathode-based Zn–air batteries are also designed which exhibit the superb electrochemical properties at different bending/twisting conditions.展开更多
Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A b...Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.展开更多
Cu2O nanocubes and Cu nanoparticles were prepared by reducing Cu( Ⅱ ) salt with ethanol as the reducing agent and solvent in the presence of multidentate ligand poly(vinylpyrrolidone) (PVP) under different cond...Cu2O nanocubes and Cu nanoparticles were prepared by reducing Cu( Ⅱ ) salt with ethanol as the reducing agent and solvent in the presence of multidentate ligand poly(vinylpyrrolidone) (PVP) under different conditions. The morphologies and the crystalline structures of the products were characterized by using scanning electron microscopy (SEM), transmission electron microscopy(TEM), selected-area electron diffraction( SAED), and powder X-ray diffraction(XRD). In particular, the influences of the solvothennal reaction temperature and alkalinity on the products were investigated. A lower temperature and a lower alkali concentration favor the formation of the Cu2O phase, whereas a higher temperature and a higher alkali concentration generally lead to the formation of the Cu phase.展开更多
The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uni...The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size.展开更多
ZnSnO_(3) nanocubes(ZSNCs)with various Pt concentrations(i.e.,1 at%,2 at%,and 5 at%)were synthesized by a simple one-pot hydrothermal method.The microstructures of pure and Pt-doped ZSNCs were characterized by X-ray d...ZnSnO_(3) nanocubes(ZSNCs)with various Pt concentrations(i.e.,1 at%,2 at%,and 5 at%)were synthesized by a simple one-pot hydrothermal method.The microstructures of pure and Pt-doped ZSNCs were characterized by X-ray diffractometry,scanning electron microscopy,transmission electron microscopy,energy-dispersive X-ray spectroscopy,and X-ray photoelectron spectroscopy.Results showed that the pure ZSNCs have a perovskite structure with a side length of approximately 600 nm;this length was reduced to 400 nm after Pt doping.Following doping,PtO_(x)(PtO and PtO_(2)) nanoparticles with a diameter of approximately 5 nm were uniformly coated on the surface of the ZSNCs.Systematic investigation of the gas-sensing abilities of the nanocubes showed that the Pt-doped ZSNCs have excellent sensing properties toward nitrogen dioxide(NO_(2)) gas in the operating temperature range of 75-175℃.Among the sensors prepared,that based on 1 at%Pt-doped ZSNCs exhibited the best response of 16.0 toward 500 ppb NO_(2) at 125℃;this response is over 11 times higher compared with that of pure ZSNCs.The enhanced NO_(2) sensing mechanism of the Pt-doped ZSNCs may be attributed to the synergistic effects of catalytic activity and chemical sensitization by Pt doping.展开更多
Electromagnetic wave absorbing materials are urgently required in the fields of medicine,communication,and military.However,the thickness,weight,narrow effective bandwidth,and weak absorbing ability of the materials r...Electromagnetic wave absorbing materials are urgently required in the fields of medicine,communication,and military.However,the thickness,weight,narrow effective bandwidth,and weak absorbing ability of the materials restrict their further application.In this work,a double-layer hollow nanocube with a dielectric titanium dioxide(TiO_(2))shell and a magnetic CoFe oxide inner shell is prepared.Prussian blue(PB)is prepared by the hydrothermal method,and used as the template to prepare PB@CoFe PB analogue(PBA).After selective etching and further calcination,hollow CoFe oxide particles are obtained.The obtained particles are then coated with SiO_(2)and TiO_(2),respectively,and the intermediate layer is dislodged to obtain the final CoFe oxide@TiO_(2)with the hollow double shell structure.The obtained double-layer hollow structure can effectively capture the incident electromagnetic waves,and increase the propagation path.Moreover,the obvious enhancement of interface polarization and the improvement of impedance matching enhance the wave absorbing ability of the material.The analysis results show that,the structure is stable and the dispersion is good.The maximum reflection loss(RL)at 10 GHz is as high as-46.1 dB with the sample thickness of 1.6 mm.The light-weight and high-efficiency CoFe oxide@TiO_(2)absorber is promised to be used in commercial and military aerospace fields.展开更多
A stable,efficient,and economical bifunctional electrolytic catalyst would be incredibly beneficial for the development of hydrogen production by electrocatalytic water splitting.In this study,we synthesized a novel ...A stable,efficient,and economical bifunctional electrolytic catalyst would be incredibly beneficial for the development of hydrogen production by electrocatalytic water splitting.In this study,we synthesized a novel MnS–MnO heterogeneous nanocube@N,S-doped carbon(MnS–MnO@NSC).MnS–MnO nanocubes possess rich heterogeneous interfaces and plentiful catalytic active sites to promote electrochemical reactions,while the N,S-doped carbon shell possesses excellent conductivity and catalytic properties and protects the nanocubes.MnS–MnO@NSC exhibited excellent electrochemical properties as an effective bifunctional electrocatalyst for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in KOH solution.In the HER,the overpotential was as low as 124 mV at a current density of 10 mA·cm^(-2)while in the OER,it was only 340 mV at 100 mA·cm^(-2)under the same conditions.In addition,a MnS–MnO@NSC||MnS–MnO@NSC electrolyzer exhibited almost comparable activity and higher steadiness than those exhibited by the state-of-the-art Pt/C||RuO_(2)/C system for full water splitting in KOH solution.展开更多
Nitrate(NO_(3)^(−))electroreduction reaction(NO_(3)^(−)RR)provides an attractive and sustainable route for NO_(3)^(−)pollution mitigation or energy-saved ammonia(NH3)synthesis.In this work,high-quality B and Fe co-dop...Nitrate(NO_(3)^(−))electroreduction reaction(NO_(3)^(−)RR)provides an attractive and sustainable route for NO_(3)^(−)pollution mitigation or energy-saved ammonia(NH3)synthesis.In this work,high-quality B and Fe co-doped Co_(2) P hollow nanocubes(B/Fe-Co_(2) P HNCs)are successfully synthesized though simultaneous boronation-phosphorization treatment,which reveal outstanding selectivity,activity,stability for the NO_(3)^(−)to NH_(3) conversion in neutral electrolyte because of big surface area,fast mass transport,superhydrophilic surface,and optimized electronic structure.B/Fe-Co_(2) P HNCs can achieve the high NH3 yield rate(22.67 mg h^(−1) mg_(cat)^(−1))as well as Faradaic efficiency(97.54%)for NO_(3)^(−)RR,greatly outperforming most of non-precious metal based NO_(3)^(−)RR electrocatalysts.展开更多
To develop high-performance metal-organic frameworks(MOFs)for catalysis is of great importance.Here,we synthesized the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)(BTC=benzene-1,3,5-tricarboxylate)nanocubes in a deep eutectic s...To develop high-performance metal-organic frameworks(MOFs)for catalysis is of great importance.Here,we synthesized the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)(BTC=benzene-1,3,5-tricarboxylate)nanocubes in a deep eutectic solvent of ZnCl_(2)/ethylene glycol solution.The route can proceed at room temperature and the reaction time needed is shortened to be 30 min,which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time.The formation mechanism of the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes in deep eutectic solvent(DES)was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique.The mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.展开更多
The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications.Although the construction of supramolecular cages via a bottom-up self-asse...The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications.Although the construction of supramolecular cages via a bottom-up self-assembly process has been well developed,the sophisticated synthesis still remains a challenge.Here we report the design and assembly of a giant double-rimed nanocube Zn_(24)LH_(8),built with 8 tribenzotriquinacene as six-connected vertices and 24<tpy-Zn^(2+)-tpy>(tpy=terpyridine)connectivities serving as the edges.From the single-crystal structure of tribenzotriquinacene-based ligand LH,the bowl-shaped ligand defines a suitable rigid platform for the spatially well-defined attachment of three sets of parallel vertices,which promotes the quantitative formation of the desired three-dimensional(3D)double-rimed cubic architectures.The formed nanocube Zn_(24)LH_(8)possesses molecular weight up to 25.6 kDa and side length 5.3 nm.Remarkably,the Zn_(24)LH_(8)exhibits strong cyan light emission with high luminescence quantum yields in solution and in the solid state based on the inherent cage-confinement induced emission enhancement.By adding orange-emissive Rhodamine B,emission tuning experiments were achieved including white light emission.This work presents a new system for the imitation of complex assemblies and provides a promising candidate for emissive materials.展开更多
The metallic Na has been regarded as the most promising anode for next-generation sodium metal batteries(SMBs)owing to its high theoretical specific capacity,low redox potential,and low cost.The practical applications...The metallic Na has been regarded as the most promising anode for next-generation sodium metal batteries(SMBs)owing to its high theoretical specific capacity,low redox potential,and low cost.The practical applications of Na metal,however,have still been severely hindered by the uncontrolled sodium dendrites growth during Na deposition and stripping processes,which leads to low Coulombic efficiency and poor cycling stability.In this study,sub-nano zinc oxide(ZnO)uniformly dispersed in threedimensional(3D)porous nitrogen-doped(N-doped)carbon nanocube(ZnO@NC)was acquired as a stable host for dendrite-free Na metal anode.Benefiting from the in-situ electrochemically formed sodiophilic nucleation site(NaZn13 alloy)and the enriched pore structure,rapid and uniform sodium deposition behavior can be performed.As expected,the ZnO@NC electrode delivers impressive electrochemical performance,an ultra-high areal capacity of 20 mAh·cm−2 in the half-cell can be maintained for 2,000 h.In the symmetrical-cell,it can also exhibit up to 3,000 h at 3 mA·cm−2 and 3 mAh·cm−2 with low polarization potential.Furthermore,in the full-cell that matches with Prussian blue(PB)cathode,the Na@ZnO@NC anode performs the outstanding long-cycling and rate performance.Therefore,this work provides an effective strategy to inhibit the growth of Na dendrites for the development of high-safety and long-cycling SMBs.展开更多
This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of ...This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of polydopamine was used as both an adherent agent and an electron transfer mediator,due to itsπ-conjugated electron system.The highest production yield was achieved using a TNT@PDA/Nc/Au40%electrode,with Faradaic efficiencies of 47.4%(110.5μM cm^(-2))and 27.8%(50.4μM cm^(-2))for methanol and methane,respectively.The performance of the photoelectrodes was shown to be Cu_(2)O facet-dependent,with cubic structures leading to greater conversion of CO_(2)to methanol(43%)and methane(27%),compared to the octahedral morphology,while a higher percentage of metallic gold on the nanostructured Cu_(2)O surface was mainly important for CH4production.Density functional theory(DFT)calculations supported these findings,attributing the superior photoelectrocatalytic performance of the TNT@PDA/Nc/Au40%electrode for CH4generation to the formation of an OCH3intermediate bonded to Au atoms.Studies using isotope-labeling and analysis by gas chromatograph-mass(GC-MS)demonstrated that13CO_(2)was the source for photoelectrocatalytic generation of13CH3OH and13CH313CH2OH.展开更多
The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treat...The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treatment using ternary cobalt-nickel-iron nanocubes of Prussian blue analogs (PBA) as a precursor. The scanning electron microscopy and transmission electron microscopy results show that the P-Co0.9Ni0.9Fe1.2 NCs maintain a cubic structure with a rough surface, implying the rich surface defects as exposed active sites. The thermal phosphorization of the ternary PBA precursor not only provids carbon doping but also leads to the in situ construction of surface defects on the NCs. The carbon doping from the PBA precursor lowers the charge transfer resistance and optimizes the electronic transformation. The synergistic effect among the ternary metal ions and rich defects contributes to the enhanced electrocatalytic performance . The P-Co0.9Ni0.9Fe1.2NCs achieve low overpotentials of -200.7 and 273.1 mV at a current density of 10 mA cm^-2 for the hydrogen evolution reaction and the oxygen evolution reaction, respectively. The potential of overall water splitting reaches 1.52 V at a current density of 10 mA cm^-2. The longterm stability of the electrocatalysts was also evaluated. This work provides a facile method to design efficient transitionmetal- based bifunctional electrocatalysts for overall water splitting.展开更多
基金The Natural Science Foundation of Henan Province(222300420083)the Opening Foundation of State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource of Xinjiang University(KFKT2021004)。
文摘The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.
基金sponsored by the National Natural Science Foundation of China (21875133 and 51873100)the Fundamental Research Funds for the Central Universities (GK201901002 and GK201902014)the 111 Project (B14041)。
文摘The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272246 and 81172082)the Fundamental Research Funds for the Central Universities,China(Grant No.2030000001)
文摘The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots (QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its comer. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004043, 11274083, and 61107036) and the SZMSTP, China (Grant Nos. JC201005260185A, JCYJ20120613114137248, 2011PTZZ048, JC201105160524A, and KQCX20120801093710373).
文摘Plasmonic nanocubes are ideal candidates in realizing controllable reflectance surfaces, unidirectional nanoantennas and other plasmon-associated applications. In this work, we perform full-wave calculations of the optical forces in threedimensional gold nanocube dimers. For a fixed center-to-center separation, the rotation of the plasmonic nanocube leads to a slight shift of the plasmonic resonance wavelength and a strong change in the optical binding forces. The effective gap and the near field distribution between the two nanocubes are shown to be crucial to this force variation. We further find that the optical binding force is dominated by the scattering process while the optical forces in the wavevector direction are affected by both scattering and absorption, making the former relatively more sensitive to the rotation of(an effective gap between) the nanocubes. Our results would be useful for building all-optically controllable meta-surfaces.
基金supported by the Program for New Century Excellent Talents in Heilongjiang Provincial University (1252-NCET-018)the Scientific Research Fund of Heilongjiang Provincial Education Department (12531179)
文摘In this paper, for the first time, we report the synthesis of nanoscale cuprous chloride(Cu Cl) cubic structure by a facile hydrothermal route. A possible mechanism for the growth of those nanostructures is proposed based on the experimental results. It is discovered that the existence of HCl could affect the surface of Cu Cl nanocubes. This unique cube-like nanostructure with rough surface significantly enhances the electroactive surface areas of Cu Cl, leading to a high special capacitance of 376 m F cm-2at the current density of 1.0 m A cm-2. There is still a good reversibility with cycling efficiency of 88.8 % after 2,000 cycles, demonstrating its excellent long-term cycling stability and might be the promising candidates as the excellent electrode material.
基金supported by the National Basic Research Program of China(2014CB239700)the Program of National Natural Science Foundation of China(21501120+1 种基金21371121and 21331004)Science and Technology Commission of Shanghai Municipality(14DZ1205700 and 14DZ2250800)
文摘Porous Zn–Sn–O nanocubes with a uniform size were synthesized through a facile aqueous solution route combined with subsequent thermal treatment. The chemical composition, morphology, and microstructure of Zn–Sn–O nanocubes, which have significant effects on the lithium storage performances, were easily tuned by adjusting the calcination temperature in preparation processes of ZnSn(OH)6solid nanocubes. Further studies revealed that porous Zn–Sn–O nanocubes prepared at 600 °C exhibited a good rate capability and a high reversible capacity of 700 m Ah g^(-1)at a current density of 200 m Ag^(-1)after 50 cycles, which may be a great potential as anode materials in Lithium-ion batteries.
基金supported by the National Natural Science the Foundations of China(Nos.11774171,11374159)the Fundamental Research Funds for the Central Universities(Nos.NJ20160105,NZ2015101)sponsored by Qing Lan Project of Jiangsu Province
文摘The controllable synthesis of uniform silver nanocubes with high purity is pivotal for the fundamental study of self-assembly and further research on the hollow nanostructures,gold nanocages for instance.Here,Ag nanocubes of different sizes were synthesized by an improved polyol method.With addition of HCl solution,Ag nanocubes with size about 100 nm were obtained under an air atmosphere.And Ag nanocubes with size around50 nm can be produced in a short time under Argon atmosphere with the presence of NaHS instead of HCl.Meanwhile,uniform Ag nanocubes with size larger than 100 nm were also synthesized successfully via adjusting experiment parameters.Results of transmission electron microscopy(TEM)combined with selected area electron diffraction(SAED)show that the Ag nanocubes are single crystalline with six(200)surface plane.In the UV-Vis-NIR optical absorption spectrum,the diple moment resonance absorption peak is changed in the range of 420—500nm with the increase of Ag nanocubes size.
基金the National Natural Science Foundation of China(21905151 and 51772162)Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ14)+4 种基金the Natural Science Foundation of Shandong Province(ZR2018BB034)Taishan Scholar Young Talent ProgramMajor Scientific and Technological Innovation Project(2019JZZY020405)China Postdoctoral Science Foundation(2019M652499)the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University(2019-23)。
文摘Designing the highly catalytic activity and durable bifunctional catalysts toward oxygen reduction/evolution reaction(ORR/OER) is paramount for metal–air batteries. Metal–organic frameworks(MOFs)-based materials have attracted a great deal of attention as the potential candidate for effectively catalyzing ORR/OER due to their adjustable composition and porous structure. Herein, we first introduce the Mn species into zeolitic-imidazole frameworks(ZIFs) and then further pyrolyze the Mn-containing bimetallic ZIFs to synthesize core-shell-structured Co@Co4N nanoparticles embedded into MnO-modified porous N-doped carbon nanocubes(Co@Co4N/MnO–NC). Co@Co4N/MnO–NC exhibits the outstanding catalytic activity toward ORR and OER which is attributed to its abundant pyridinic/graphitic N and Co4N,the optimized content of MnO species, highly dispersed catalytic sites and porous carbon matrix. As a result, the Co@Co4N/MnO–NC-based Zn–air battery exhibits enhanced performances, including the high discharge capacity(762 mA h gZn-1), large power density(200.5 mW cm-2), stable potential profile over 72 h, low overpotential(<1.0 V) and superior cycling life(2800 cycles). Moreover, the belt-shaped Co@Co4N/MnO–NC cathode-based Zn–air batteries are also designed which exhibit the superb electrochemical properties at different bending/twisting conditions.
文摘Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.
基金Supported by the National Natural Science Foundation of China(Nos. 20331010 and 90406002) and Specialized ResearchFund for the Doctoral Program of Higher Education(No. 20030007014).
文摘Cu2O nanocubes and Cu nanoparticles were prepared by reducing Cu( Ⅱ ) salt with ethanol as the reducing agent and solvent in the presence of multidentate ligand poly(vinylpyrrolidone) (PVP) under different conditions. The morphologies and the crystalline structures of the products were characterized by using scanning electron microscopy (SEM), transmission electron microscopy(TEM), selected-area electron diffraction( SAED), and powder X-ray diffraction(XRD). In particular, the influences of the solvothennal reaction temperature and alkalinity on the products were investigated. A lower temperature and a lower alkali concentration favor the formation of the Cu2O phase, whereas a higher temperature and a higher alkali concentration generally lead to the formation of the Cu phase.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60571045 and 50872147)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z035)
文摘The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size.
基金financially supported by the National Natural Science Foundation of China(Nos.51674067 and 51422402)the Fundamental Research Funds for the Central Universities(Nos.N180102032,N180106002,and N180408018)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC1807160)the Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control(No.HB201902)。
文摘ZnSnO_(3) nanocubes(ZSNCs)with various Pt concentrations(i.e.,1 at%,2 at%,and 5 at%)were synthesized by a simple one-pot hydrothermal method.The microstructures of pure and Pt-doped ZSNCs were characterized by X-ray diffractometry,scanning electron microscopy,transmission electron microscopy,energy-dispersive X-ray spectroscopy,and X-ray photoelectron spectroscopy.Results showed that the pure ZSNCs have a perovskite structure with a side length of approximately 600 nm;this length was reduced to 400 nm after Pt doping.Following doping,PtO_(x)(PtO and PtO_(2)) nanoparticles with a diameter of approximately 5 nm were uniformly coated on the surface of the ZSNCs.Systematic investigation of the gas-sensing abilities of the nanocubes showed that the Pt-doped ZSNCs have excellent sensing properties toward nitrogen dioxide(NO_(2)) gas in the operating temperature range of 75-175℃.Among the sensors prepared,that based on 1 at%Pt-doped ZSNCs exhibited the best response of 16.0 toward 500 ppb NO_(2) at 125℃;this response is over 11 times higher compared with that of pure ZSNCs.The enhanced NO_(2) sensing mechanism of the Pt-doped ZSNCs may be attributed to the synergistic effects of catalytic activity and chemical sensitization by Pt doping.
基金the National Natural Science Foundation of China(Nos.51773060,5207309151573045)the Shanghai Key Laboratory of Advanced Polymer Materials。
文摘Electromagnetic wave absorbing materials are urgently required in the fields of medicine,communication,and military.However,the thickness,weight,narrow effective bandwidth,and weak absorbing ability of the materials restrict their further application.In this work,a double-layer hollow nanocube with a dielectric titanium dioxide(TiO_(2))shell and a magnetic CoFe oxide inner shell is prepared.Prussian blue(PB)is prepared by the hydrothermal method,and used as the template to prepare PB@CoFe PB analogue(PBA).After selective etching and further calcination,hollow CoFe oxide particles are obtained.The obtained particles are then coated with SiO_(2)and TiO_(2),respectively,and the intermediate layer is dislodged to obtain the final CoFe oxide@TiO_(2)with the hollow double shell structure.The obtained double-layer hollow structure can effectively capture the incident electromagnetic waves,and increase the propagation path.Moreover,the obvious enhancement of interface polarization and the improvement of impedance matching enhance the wave absorbing ability of the material.The analysis results show that,the structure is stable and the dispersion is good.The maximum reflection loss(RL)at 10 GHz is as high as-46.1 dB with the sample thickness of 1.6 mm.The light-weight and high-efficiency CoFe oxide@TiO_(2)absorber is promised to be used in commercial and military aerospace fields.
基金financially supported by the National Natural Science Foundation of China(No.51962002)Natural Science Foundation of Guangxi(No.2022GXNSFAA035463)。
文摘A stable,efficient,and economical bifunctional electrolytic catalyst would be incredibly beneficial for the development of hydrogen production by electrocatalytic water splitting.In this study,we synthesized a novel MnS–MnO heterogeneous nanocube@N,S-doped carbon(MnS–MnO@NSC).MnS–MnO nanocubes possess rich heterogeneous interfaces and plentiful catalytic active sites to promote electrochemical reactions,while the N,S-doped carbon shell possesses excellent conductivity and catalytic properties and protects the nanocubes.MnS–MnO@NSC exhibited excellent electrochemical properties as an effective bifunctional electrocatalyst for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in KOH solution.In the HER,the overpotential was as low as 124 mV at a current density of 10 mA·cm^(-2)while in the OER,it was only 340 mV at 100 mA·cm^(-2)under the same conditions.In addition,a MnS–MnO@NSC||MnS–MnO@NSC electrolyzer exhibited almost comparable activity and higher steadiness than those exhibited by the state-of-the-art Pt/C||RuO_(2)/C system for full water splitting in KOH solution.
基金supported by Natural Science Foundation of Shanxi Province(No.202203021222213)Taiyuan University of Science and Technology Scientific Research Initial Funding(No.20222091)+2 种基金National Natural Science Foundation of China(No.22073061)Science and Technology Innovation Team of Shaanxi Province(No.2023-CX-TD-27)Fundamental Research Funds for the Central Universities(No.GK202202001).
文摘Nitrate(NO_(3)^(−))electroreduction reaction(NO_(3)^(−)RR)provides an attractive and sustainable route for NO_(3)^(−)pollution mitigation or energy-saved ammonia(NH3)synthesis.In this work,high-quality B and Fe co-doped Co_(2) P hollow nanocubes(B/Fe-Co_(2) P HNCs)are successfully synthesized though simultaneous boronation-phosphorization treatment,which reveal outstanding selectivity,activity,stability for the NO_(3)^(−)to NH_(3) conversion in neutral electrolyte because of big surface area,fast mass transport,superhydrophilic surface,and optimized electronic structure.B/Fe-Co_(2) P HNCs can achieve the high NH3 yield rate(22.67 mg h^(−1) mg_(cat)^(−1))as well as Faradaic efficiency(97.54%)for NO_(3)^(−)RR,greatly outperforming most of non-precious metal based NO_(3)^(−)RR electrocatalysts.
基金support by Ministry of Science and Technology of China(No.2017YFA0403003)the National Natural Science Foundation of China(Nos.22033009 and 22121002).
文摘To develop high-performance metal-organic frameworks(MOFs)for catalysis is of great importance.Here,we synthesized the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)(BTC=benzene-1,3,5-tricarboxylate)nanocubes in a deep eutectic solvent of ZnCl_(2)/ethylene glycol solution.The route can proceed at room temperature and the reaction time needed is shortened to be 30 min,which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time.The formation mechanism of the mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes in deep eutectic solvent(DES)was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique.The mesoporous Cu_(3−x)Zn_(x)(BTC)_(2)nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.
基金We acknowledge the support from the National Natural Science Foundation of China(Nos.21971257 and 22101060)Hunan Provincial Science and Technology Plan Project of China(No.2019TP1001)+2 种基金the Guangdong Natural Science Foundation(No.2022A1515012187)the Science and Technology Research Project of Guangzhou(Nos.202201020201 and 202102010432)Guizhou Science&Technology Supporting Plan(No.[2019]2860).
文摘The study of discrete nanosized cages has gone a long way to seek aesthetically appealing structures and to carry out functional applications.Although the construction of supramolecular cages via a bottom-up self-assembly process has been well developed,the sophisticated synthesis still remains a challenge.Here we report the design and assembly of a giant double-rimed nanocube Zn_(24)LH_(8),built with 8 tribenzotriquinacene as six-connected vertices and 24<tpy-Zn^(2+)-tpy>(tpy=terpyridine)connectivities serving as the edges.From the single-crystal structure of tribenzotriquinacene-based ligand LH,the bowl-shaped ligand defines a suitable rigid platform for the spatially well-defined attachment of three sets of parallel vertices,which promotes the quantitative formation of the desired three-dimensional(3D)double-rimed cubic architectures.The formed nanocube Zn_(24)LH_(8)possesses molecular weight up to 25.6 kDa and side length 5.3 nm.Remarkably,the Zn_(24)LH_(8)exhibits strong cyan light emission with high luminescence quantum yields in solution and in the solid state based on the inherent cage-confinement induced emission enhancement.By adding orange-emissive Rhodamine B,emission tuning experiments were achieved including white light emission.This work presents a new system for the imitation of complex assemblies and provides a promising candidate for emissive materials.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52102222,51920105004,U1805254,and U1705255)Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices(No.201905010002).
文摘The metallic Na has been regarded as the most promising anode for next-generation sodium metal batteries(SMBs)owing to its high theoretical specific capacity,low redox potential,and low cost.The practical applications of Na metal,however,have still been severely hindered by the uncontrolled sodium dendrites growth during Na deposition and stripping processes,which leads to low Coulombic efficiency and poor cycling stability.In this study,sub-nano zinc oxide(ZnO)uniformly dispersed in threedimensional(3D)porous nitrogen-doped(N-doped)carbon nanocube(ZnO@NC)was acquired as a stable host for dendrite-free Na metal anode.Benefiting from the in-situ electrochemically formed sodiophilic nucleation site(NaZn13 alloy)and the enriched pore structure,rapid and uniform sodium deposition behavior can be performed.As expected,the ZnO@NC electrode delivers impressive electrochemical performance,an ultra-high areal capacity of 20 mAh·cm−2 in the half-cell can be maintained for 2,000 h.In the symmetrical-cell,it can also exhibit up to 3,000 h at 3 mA·cm−2 and 3 mAh·cm−2 with low polarization potential.Furthermore,in the full-cell that matches with Prussian blue(PB)cathode,the Na@ZnO@NC anode performs the outstanding long-cycling and rate performance.Therefore,this work provides an effective strategy to inhibit the growth of Na dendrites for the development of high-safety and long-cycling SMBs.
基金FAPESP,Brazil(#2023/10027-5,#2014/50945-4,#2020/15230-5,and#2021/000675-4)CNPq,Brazil(#465571/2014-0,#303269/2021-9,and#307837/2014-9)+6 种基金Instituto Serrapilheira(grant number Serra-2211-41925)FAPEMIG,Brazil(#PPM-00831-15)for support of this workCNPq,Brazil(#105944/2022-0)and PROPEUNESP(13/2022)FAPESP(#2019/00463-7,#2018/22845-6,and#2021/08007-0,respectively)for scholarshipsthe National Institute for Alternative Technologies of Detection,Toxicological Evaluation and Removal of Micropollutants and Radioactives(INCT-DATREM)the support of the Research Centre for Greenhouse Gas Innovation(RCGI),hosted by the University of Sao Paulo(USP)and sponsored by FAPESP and Shell Brasilthe strategic support given by ANP,Brazil(Brazilian National Oil,Natural Gas,and Biofuels Agency)through the R&D levy regulation。
文摘This work describes the use of TiO_(2)nanotubes-based electrodes(TNT)modified with Cu_(2)O nanostructures and gold nanoparticles for the photoelectroreduction of CO_(2)to produce value-added compounds.A thin layer of polydopamine was used as both an adherent agent and an electron transfer mediator,due to itsπ-conjugated electron system.The highest production yield was achieved using a TNT@PDA/Nc/Au40%electrode,with Faradaic efficiencies of 47.4%(110.5μM cm^(-2))and 27.8%(50.4μM cm^(-2))for methanol and methane,respectively.The performance of the photoelectrodes was shown to be Cu_(2)O facet-dependent,with cubic structures leading to greater conversion of CO_(2)to methanol(43%)and methane(27%),compared to the octahedral morphology,while a higher percentage of metallic gold on the nanostructured Cu_(2)O surface was mainly important for CH4production.Density functional theory(DFT)calculations supported these findings,attributing the superior photoelectrocatalytic performance of the TNT@PDA/Nc/Au40%electrode for CH4generation to the formation of an OCH3intermediate bonded to Au atoms.Studies using isotope-labeling and analysis by gas chromatograph-mass(GC-MS)demonstrated that13CO_(2)was the source for photoelectrocatalytic generation of13CH3OH and13CH313CH2OH.
基金supported by the Natural Science Foundation of Shandong Province(ZR2017MB059)the Major Program of Shandong Province Natural Science Foundation(ZR2018ZC0639)+2 种基金the National Natural Science Foundation of China(21776314)the Fundamental Research Funds for the Central Universities(18CX05016A)the Postgraduate Innovation Project of China University of Petroleum(YCX2018074)
文摘The ternary cobalt-nickel-iron phosphide nanocubes (P-Co0.9Ni0.9Fe1.2 NCs) with high intrinsic activity, conductivity, defect concentration and optimized ratio have been realized through a facile phosphorization treatment using ternary cobalt-nickel-iron nanocubes of Prussian blue analogs (PBA) as a precursor. The scanning electron microscopy and transmission electron microscopy results show that the P-Co0.9Ni0.9Fe1.2 NCs maintain a cubic structure with a rough surface, implying the rich surface defects as exposed active sites. The thermal phosphorization of the ternary PBA precursor not only provids carbon doping but also leads to the in situ construction of surface defects on the NCs. The carbon doping from the PBA precursor lowers the charge transfer resistance and optimizes the electronic transformation. The synergistic effect among the ternary metal ions and rich defects contributes to the enhanced electrocatalytic performance . The P-Co0.9Ni0.9Fe1.2NCs achieve low overpotentials of -200.7 and 273.1 mV at a current density of 10 mA cm^-2 for the hydrogen evolution reaction and the oxygen evolution reaction, respectively. The potential of overall water splitting reaches 1.52 V at a current density of 10 mA cm^-2. The longterm stability of the electrocatalysts was also evaluated. This work provides a facile method to design efficient transitionmetal- based bifunctional electrocatalysts for overall water splitting.