Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing...Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities.展开更多
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr...In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.展开更多
Cu-Al-O nanofibers are synthesized by an electrospinning method. After electrospinning process, these nanofi bers were thermally treated at different temperatures from 900 to 1 100 ℃. The morphology and crystal struc...Cu-Al-O nanofibers are synthesized by an electrospinning method. After electrospinning process, these nanofi bers were thermally treated at different temperatures from 900 to 1 100 ℃. The morphology and crystal structure of the fi bers were analyzed by scanning electron microscopy and X-ray diffraction. Thick fi lm gas sensors were fabricated by spinning the nanofi bers on a ceramic substrate with Au-Pt interdigitated electrodes. These sensors exhibited high ozone sensing properties at room temperature. When the sensors were exposed to 100 ppm ozone, the response time was about 2.74 s, and the recovery was about 12.68 s.展开更多
Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptabilit...Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.展开更多
Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a vers...Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a versatile assembly process for the preparation of water-soluble conductive polyaniline(PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template.The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline;the resulting modifi ed M13 is denoted as m-M13.Highly negatively-charged poly(sulfonated styrene)was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fi bers in aqueous solution.A transparent solution of the conductive PANi/m-M13 composite fi bers can be readily obtained without any further purifi cation step.The fi bers can be easily fabricated into thin conductive fi lms due to their high aspect ratio and good solubility in aqueous solution.This synthesis discloses a unique and versatile way of using bionanorods to produce composite fi brillar materials with narrow dispersity,high aspect ratio,and high processibility,which may have many potential applications in electronics,optics,sensing,and biomedical engineering.展开更多
基金We are thankful for the Project Supported by the Zhejiang Provincial Natural Science Foundation of China(GB21031200070)National Natural Science Foundation of China(C125020173)for the support to this research.
文摘Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities.
文摘In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.
基金Supported by the 863 High-Technology Research and Development Program of China(No.2009AA03Z442)the National Science Foundation of China(No.61077074)the Science and Technology Department of Jilin Province(No.20090422)
文摘Cu-Al-O nanofibers are synthesized by an electrospinning method. After electrospinning process, these nanofi bers were thermally treated at different temperatures from 900 to 1 100 ℃. The morphology and crystal structure of the fi bers were analyzed by scanning electron microscopy and X-ray diffraction. Thick fi lm gas sensors were fabricated by spinning the nanofi bers on a ceramic substrate with Au-Pt interdigitated electrodes. These sensors exhibited high ozone sensing properties at room temperature. When the sensors were exposed to 100 ppm ozone, the response time was about 2.74 s, and the recovery was about 12.68 s.
文摘Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.
基金We are grateful for financial support from NSF-DMR-0706431,NSF career award,US DoD,and the W.M.Keck Foundation.This manuscript has been approved by the U.S.Army Natick Soldier Research,Development and Engineering Center for unlimited distribution(PAO#08-107).
文摘Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices,sensors,catalysts,and energy storage units.In this communication,we report a versatile assembly process for the preparation of water-soluble conductive polyaniline(PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template.The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline;the resulting modifi ed M13 is denoted as m-M13.Highly negatively-charged poly(sulfonated styrene)was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fi bers in aqueous solution.A transparent solution of the conductive PANi/m-M13 composite fi bers can be readily obtained without any further purifi cation step.The fi bers can be easily fabricated into thin conductive fi lms due to their high aspect ratio and good solubility in aqueous solution.This synthesis discloses a unique and versatile way of using bionanorods to produce composite fi brillar materials with narrow dispersity,high aspect ratio,and high processibility,which may have many potential applications in electronics,optics,sensing,and biomedical engineering.