Commercial Chinese ink was employed to disperse pristine vapor-grown carbon nanofibers(VGCNFs)in aqueous suspensions via horizontal ball milling.The obtained suspension was used to fabricate conductive paper-based com...Commercial Chinese ink was employed to disperse pristine vapor-grown carbon nanofibers(VGCNFs)in aqueous suspensions via horizontal ball milling.The obtained suspension was used to fabricate conductive paper-based composites through filtration-deposition onto filter paper.It was found that the carbon black particles from the Chinese ink helped separate VGCNFs and acted as connection points between the VGCNFs,while the glue reinforced the conduction network.Thus,the VGCNF-ink/paper ternary composite showed sufficiently low sheet resistance.With merely 2.5 mg·cm^(−2)VGCNFs,the sheet resistance could be reduced to 4.5Ω·sq^(−1).As a proof of concept,these paper-based composites were directly used as electrodes of solid-state symmetric electronic double-layer capacitors(EDLCs)and the substrate for the electrodeposition of MnO_(2)to achieve higher electrochemical performances.The EDLCs fabricated with 2.5 mg·cm^(−2)VGCNFs showed a specific capacitance of 224 mF·cm^(−2)at a current density of 1 mA·cm^(−2),which was retained by 86.4%after 10,000 charge-discharge cycles.Moreover,thanks to the high electrical conductivity and the porous structure,the MnO_(2)decorated paper-based composites exhibited dramatically enhanced specific capacitance.It is believed that our finding offers an idea to directly utilize commercial Chinese ink for the fabrication of electrode materials.展开更多
基金This work was supported by the National Natural Science Foundation of China(51762023 and 51962013)Natural Science Foundation of Jiangxi Province(20192ACB20018 and 20202BABL204020)+4 种基金Key R&D Program of Jiangxi Province(20192ACB80007,20201BBE51011,20192ACB80004 and jxsq2019201036)the projects of Shenzhen Technology University(SZTU)Start-up Grant(2018)Natural Science Foundation of Top Talent Project of SZTU(Grant No.2019010801002)General Projects of Shenzhen Stable Development(SZWD2021003)Key Projects of Provincial-Regional Joint Fund(2020B1515120002).
文摘Commercial Chinese ink was employed to disperse pristine vapor-grown carbon nanofibers(VGCNFs)in aqueous suspensions via horizontal ball milling.The obtained suspension was used to fabricate conductive paper-based composites through filtration-deposition onto filter paper.It was found that the carbon black particles from the Chinese ink helped separate VGCNFs and acted as connection points between the VGCNFs,while the glue reinforced the conduction network.Thus,the VGCNF-ink/paper ternary composite showed sufficiently low sheet resistance.With merely 2.5 mg·cm^(−2)VGCNFs,the sheet resistance could be reduced to 4.5Ω·sq^(−1).As a proof of concept,these paper-based composites were directly used as electrodes of solid-state symmetric electronic double-layer capacitors(EDLCs)and the substrate for the electrodeposition of MnO_(2)to achieve higher electrochemical performances.The EDLCs fabricated with 2.5 mg·cm^(−2)VGCNFs showed a specific capacitance of 224 mF·cm^(−2)at a current density of 1 mA·cm^(−2),which was retained by 86.4%after 10,000 charge-discharge cycles.Moreover,thanks to the high electrical conductivity and the porous structure,the MnO_(2)decorated paper-based composites exhibited dramatically enhanced specific capacitance.It is believed that our finding offers an idea to directly utilize commercial Chinese ink for the fabrication of electrode materials.