期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
A Novel Method for Making NiO Nanofibres via An Electrospinning Technique 被引量:8
1
作者 ChangLuSHAO HongYuGUAN ShangBinWEN BinCHEN XingHuaYANG JianGONG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第3期365-367,共3页
Thin PVA/nickel acetate composite fibres were prepared by using sol-gel processing and electrospinning technique. After calcination of the above precursor fibres, NiO nanofibres with a diameter of 50-150 nm could be ... Thin PVA/nickel acetate composite fibres were prepared by using sol-gel processing and electrospinning technique. After calcination of the above precursor fibres, NiO nanofibres with a diameter of 50-150 nm could be successfully obtained. The fibres were characterized by SEM, FT-IR, WAXD, respectively. 展开更多
关键词 PVA/nickel acetate composite NiO nanofibres PVA.
下载PDF
Dielectric properties of electrospun titanium compound/polymer composite nanofibres 被引量:1
2
作者 李蒙蒙 龙云泽 +3 位作者 谭金山 尹红星 隋万美 张志明 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期498-503,共6页
Poly(vinylpyrrolidone)/tetrabutyl titanate (PVP/ [CH3(CH2)3O]4Ti) composite nanofibres are prepared by electrospinning. After calcining parts of composite nanofibres in air at 700 ~℃, petal-like TiO2 nanostruct... Poly(vinylpyrrolidone)/tetrabutyl titanate (PVP/ [CH3(CH2)3O]4Ti) composite nanofibres are prepared by electrospinning. After calcining parts of composite nanofibres in air at 700 ~℃, petal-like TiO2 nanostructures are obtained. The characterizations of composite nanofibres and TiO2 nanostructures are carried out by a scanning electron microscope, an x-ray diffractometer, and an infrared spectrometer. Electrospun nanofibres are pressed into pellets under different pressures in order to explore their dielectric properties. It is found that the dielectric constants decrease with frequency increasing. The dielectric constant of the composite nanofibre pellet increases whereas its dielectric loss tangent decreases due to the doped titanium ions compared with those of pure PVP nanofibre pellets. In addition, it is observed that the dielectric constant of the composite nanofibre pellet decreases with the increase of the pressure applied in pelletization. 展开更多
关键词 composite nanofibres electrospinning dielectric properties
下载PDF
Fabrication and magnetic properties of Ni_(0.5)Zn_(0.5)Fe_2O_4 nanofibres by electrospinning 被引量:1
3
作者 向军 沈湘黔 +1 位作者 宋福展 刘明权 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4960-4965,共6页
NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the compo... NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol,el assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures. This paper investigates the thermal decomposition process, structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermo-gravimetric and differential thermal analysis, x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer. It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology graduMly transforms from a porous structure to a necklace-like nanostructure with the increase of calcination tempera-ture. The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000℃ for 2h are characterized by a necklace-like morphology and diameters of 100-200nm. The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000℃. The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600℃. Due to the shape anisotropy, the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis. 展开更多
关键词 NiZn ferrite nanofibre ELECTROSPINNING magnetic property shape anisotropy
下载PDF
Magnetic and Photocatalytic Behaviors of Ca Mn Co-Doped BiFeO<sub>3</sub>Nanofibres
4
作者 Yannan Feng Huanchun Wang +2 位作者 Yang Shen Yuanhua Lin Cewen Nan 《Modern Research in Catalysis》 2013年第3期1-5,共5页
Ca and Mn co-doped BiFeO3 ultrafine nanofibres were prepared with the purpose of improving magnetic and photocatalytic performances of the one-dimensional multiferroic material. Impurity phase introduced by both Bi fl... Ca and Mn co-doped BiFeO3 ultrafine nanofibres were prepared with the purpose of improving magnetic and photocatalytic performances of the one-dimensional multiferroic material. Impurity phase introduced by both Bi fluctuation and Mn substitution can be suppressed by Ca doping and a space group transition from R3c to C222 can also be triggered by Bi-site doping. With co-substitution of Mn into iron site, the Ca0.15Bi0.85Mn0.05Fe0.95O3 nanofibres presented a larger saturation magnetization than the singly Ca doping samples, possibly due to the increased double exchange interation of Fe3+-O-Fe2+, strengthened by Ca and Mn. Photocatalytic degradation test witnessed a similar drop-and-rise performance with the magnetism. 展开更多
关键词 Bismuth Ferrite NANOFIBRE MAGNETIC Photocatalytic
下载PDF
Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes
5
作者 Cengceng Zhao Gaohui Liu +6 位作者 Yanyan Lin Xueqin Li Na Meng Xianfeng Wang Shaoju Fu Jianyong Yu Bin Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期67-78,共12页
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ... Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices. 展开更多
关键词 BIOMIMETIC TRANSPARENT Nanofibrous membrane Temperature response Phase change materials
下载PDF
Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss
6
作者 Moon Sung Kang Yeuni Yu +5 位作者 Rowoon Park Hye Jin Heo Seok Hyun Lee Suck Won Hong Yun Hak Kim Dong‑Wook Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期269-292,共24页
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ... Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene nanoparticle Ternary nanofibrous matrices Myogenesis Regeneration of volumetric muscle loss Next generation sequencing
下载PDF
Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration 被引量:1
7
作者 Zijie Meng Xingdou Mu +3 位作者 Jiankang He Juliang Zhang Rui Ling Dichen Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期190-206,共17页
Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer... Three-dimensional(3D) printing provides a promising way to fabricate biodegradable scaffolds with designer architectures for the regeneration of various tissues.However,the existing3D-printed scaffolds commonly suffer from weak cell-scaffold interactions and insufficient cell organizations due to the limited resolution of the 3D-printed features.Here,composite scaffolds with mechanically-robust frameworks and aligned nanofibrous architectures are presented and hybrid manufactured by combining techniques of 3D printing,electrospinning,and unidirectional freeze-casting.It was found that the composite scaffolds provided volume-stable environments and enabled directed cellular infiltration for tissue regeneration.In particular,the nanofibrous architectures with aligned micropores served as artificial extracellular matrix materials and improved the attachment,proliferation,and infiltration of cells.The proposed scaffolds can also support the adipogenic maturation of adipose-derived stem cells(ADSCs)in vitro.Moreover,the composite scaffolds were found to guide directed tissue infiltration and promote nearby neovascularization when implanted into a subcutaneous model of rats,and the addition of ADSCs further enhanced their adipogenic potential.The presented hybrid manufacturing strategy might provide a promising way to produce additional topological cues within 3D-printed scaffolds for better tissue regeneration. 展开更多
关键词 hybrid manufacturing 3D printing unidirectional freeze-casting nanofibrous architectures tissue regeneration
下载PDF
Unleashing the healing potential:Exploring next-generation regenerative protein nanoscaffolds for burn wound recovery
8
作者 Liangwei Si Xiong Guo +9 位作者 Hriday Bera Yang Chen Fangfang Xiu Peixin Liu Chunwei Zhao Yasir Faraz Abbasi Xing Tang Vito Foderà Dongmei Cun Mingshi Yang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第6期100-112,共13页
Burn injury is a serious public health problem and scientists are continuously aiming to develop promising biomimetic dressings for effective burn wound management.In this study,a greater efficacy in burn wound healin... Burn injury is a serious public health problem and scientists are continuously aiming to develop promising biomimetic dressings for effective burn wound management.In this study,a greater efficacy in burn wound healing and the associated mechanisms ofα-lactalbumin(ALA)based electrospun nanofibrous scaffolds(ENs)as compared to other regenerative protein scaffolds were established.Bovine serum albumin(BSA),collagen type I(COL),lysozyme(LZM)and ALA were separately blended with poly(ε-caprolactone)(PCL)to fabricate four different composite ENs(LZM/PCL,BSA/PCL,COL/PCL and ALA/PCL ENs).The hydrophilic composite scaffolds exhibited an enhancedwettability and variablemechanical properties.The ALA/PCL ENs demonstrated higher levels of fibroblast proliferation and adhesion than the other composite ENs.As compared to PCL ENs and other composite scaffolds,the ALA/PCL ENs also promoted a better maturity of the regenerative skin tissues and showed a comparable wound healing effect to Collagen sponge^(■)on third-degree burn model.The enhanced wound healing activity of ALA/PCL ENs compared to other ENs could be attributed to their ability to promote serotonin production at wound sites.Collectively,this investigation demonstrated that ALA is a unique protein with a greater potential for burn wound healing as compared to other regenerative proteins when loaded in the nanofibrous scaffolds. 展开更多
关键词 Regenerative proteins Α-LACTALBUMIN SEROTONIN Electrospinning Nanofibrous dressing Third-degree burn
下载PDF
Preparation and Characterization of the Electrospun Alginate Nanofibers
9
作者 Mohammad Forhad Hossain Mustafijur Rahman 《Journal of Textile Science and Technology》 2021年第2期91-100,共10页
Due to some intrinsic functional behavior of alginate, many potential applications in the healthcare industry especially in wound care sector are observed. Many researches have been carried out to develop potential bi... Due to some intrinsic functional behavior of alginate, many potential applications in the healthcare industry especially in wound care sector are observed. Many researches have been carried out to develop potential biomedical biocompatible products in different forms from alginate fibres. Alginate nanofibres were prepared from sodium alginate polymer with the presence of poly-(ethylene oxide) (PEO), a small amount of Triton ×100 surfactant. A homogeneous spinning solution was prepared for producing Na-alginate/PEO nanofibers in electrospinning device. Nanofibres were produced by electrospinning from 70:30 and 80:20 Na-alginate/PEO of 4% solution. After a series of trials, the electrospinning parameters were optimized at 16 cm working distance, 0.4 mL/h flow rate and 10.5 kV applied voltage. The results show that the 4 wt% of 70:30 Na-alginate/PEO solution with 0.5 wt% Triton × 100 surfactant yielded smooth and stable electrospinning. The surface morphology of the fibres was investigated using Scanning Electron Microscope (SEM) and found the uniform fibres with an average diameter of 124 nm containing few thick or spindle-like fibres. FTIR investigation identified the chemical structure and molecular changes that occurred in the fibers. 展开更多
关键词 ALGINATE ELECTROSPINNING nanofibres CHARACTERIZATION Morphology
下载PDF
Patterned Nanofoam Fabrication from a Variety of Materials via Femtosecond Laser Pulses
10
作者 James A. Grant-Jacob Benita S. Mackay +6 位作者 James A. G. Baker Yunhui Xie Michael D. T. McDonnell Daniel J. Health Matthew Praeger Robert W. Eason Ben Mills 《Materials Sciences and Applications》 2019年第3期186-196,共11页
High-repetition-rate femtosecond lasers enable the precise production of nanofoam from a wide range of materials. Here, the laser-based fabrication of nanofoam from silicon, borosilicate glass, sodalime glass, gallium... High-repetition-rate femtosecond lasers enable the precise production of nanofoam from a wide range of materials. Here, the laser-based fabrication of nanofoam from silicon, borosilicate glass, sodalime glass, gallium lanthanum sulphide and lithium niobate is demonstrated, where the pore size of the nanofoam is shown to depend strongly on the material used, such that the pore width and nanofibre width appear to increase with density and thermal expansion coefficient of the material. In addition, the patterning of nanofoam on a glass slide, with fabricated pattern pixel resolution of ~35 μm, is demonstrated. 展开更多
关键词 Laser Ablation nanofibres Nanofoam QR Code Patterning Lithium NIOBATE GALLIUM LANTHANUM SULPHIDE Silicon Silica
下载PDF
Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer 被引量:11
11
作者 Yan Liu Shiya Zhou +1 位作者 Yanlin Gao Yinglei Zhai 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2019年第2期130-143,共14页
Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related t... Diabetes is one of the most prevalent diseases in the world with high-mortality and complex complications including diabetic foot ulcer(DFU). It has been reported that the difficulties in repairing the wound related to DFU has much relationship with the wound infection,change of inflammatory responses, lack of extracellular matrix(ECM), and the failure of angiogenesis. Following the development of medical materials and pharmaceutical technology, nanofibers has been developed by electrospinning with huge porosity, excellent humidity absorption, a better oxygen exchange rate, and some antibacterial activities. That is to say, as a potential material, nanofibers must be a wonderful candidate for the DFU treatment with so many benefits. Careful selection of polymers from natural resource and synthetic resource can widen the nanofibrous application. Popular methods applied for the nanofibrous fabrication consist of uniaxial electrospinning and coaxial electrospinning. Furthermore, nanofibers loading chemical, biochemical active pharmaceutical ingredient(API)or even stem cells can be wonderful dosage forms for the treatment of DFU. This review summarizes the present techniques applied in the fabrication of nanofibrous dressing(ND)that utilizes a variety of materials and active agents to offer a better health care for the patients suffering from DFU. 展开更多
关键词 NANOFIBERS Nanofibrous DRESSING DIABETIC foot ULCER UNIAXIAL ELECTROSPINNING Coaxial ELECTROSPINNING
下载PDF
Enhanced coalescence separation of oil-in-water emulsions using electrospun PVDF nanofibers 被引量:2
12
作者 Yujie Yang Lei Li +4 位作者 Qian Zhang Wenwen Chen Song Lin Zaiqian Wang Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期76-83,共8页
A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electr... A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electrospun nanofibers such as roughness and surface morphology greatly affected the oil droplet interception efficiency and surface wettability of the membrane.A series of coalescence units were prepared with different layers of nanofibrous membrane and the separation efficiencies at different initial concentrations,flow rates,and oil types were tested.It is very interesting that the obtained nanofibrous membrane exhibited superoleophilicity in air but poor oleophilicity under water,which was beneficial to the coalescence process.The coalescence unit with four membrane layers had excellent performances under different initial concentrations and flow rates.The separation efficiency of the 4-layers unit remained above 98.2%when the initial concentration reached up to 2000 mg·L-1.Furthermore,the unit also exhibited good performance with the increasing oil density and viscosity,which is promising for large-scale oil wastewater treatment. 展开更多
关键词 COALESCENCE ELECTROSPINNING Nanofibrous membrane Oil-in-water emulsions
下载PDF
Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering 被引量:2
13
作者 Jun-feng Zhou Yi-guo Wang +3 位作者 Liang Cheng Zhao Wu Xiao-dan Sun Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1644-1652,共9页
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ... Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. 展开更多
关键词 nerve regeneration POLYPYRROLE ELECTROSPINNING CONDUCTIVITY electrical property Schwann cells human umbilical cord mesenchymalstem cells nerve tissue engineering nanofibrous scaffolds neural regeneration
下载PDF
Tensile properties of tungsten-rhenium wires with nanofibrous structure 被引量:1
14
作者 Na-na Qiu Yin Zhang +2 位作者 Cheng Zhang Huan Tong Xi-ping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第9期1055-1059,共5页
In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous mi... In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature(RT) and 800?C. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse(grains diameter of 240 nm) and fine(grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800?C, the tensile strength decreased slightly but still held high values(1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed. 展开更多
关键词 tungsten-rhenium WIRE mechanical properties nanofibrous microstructure TENSILE STRENGTH
下载PDF
Immobilization and Properties of Lipase from Candida rugosa on Electrospun Nanofibrous Membranes with Biomimetic Phospholipid Moities 被引量:1
15
作者 HUANG Xiao-jun YU An-guo GE Dan XU Zhi-kang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第2期231-237,共7页
Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To imp... Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention, from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase. To improve the catalytic efficiency and activity of the immobilized enzyme, poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs) were, respectively, electrospun into nanofibrous membranes with a mean diameter of 90 nm, as a support for enzyme immobilization. Lipase from Candida rugosa was immobilized on these nanofibrous membranes by adsorption. Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN) nanofibrous and sheet membranes, respectively. Effective enzyme loading on the nanofibrous membranes was achieved up to 22.0 mg/g, which was over 10 times that on the sheet membrane. The activity retention of immobilized lipase increased from 56.4% to 76.8% with an increase in phospholipid moiety from 0 to 9.6%(molar fraction) in the nanofibrous membrane. Kinetic parameter Km was also determined for free and immobilized lipase. The Km value of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane. The optimum pH was 7.7 for free lipase, but shifted to 8.3-8.5 for immobilized lipases. The optimum temperature was determined to be 35 ℃ for the free enzyme, but 42-44℃ for the immobilized ones, respectively. In addition, the thermal stability, reusability, and storage stability of the immobilized lipase were obviously improved compared to the free one. 展开更多
关键词 Biomimetic polymer Nanofibrous membrane ELECTROSPINNING Enzyme immobilization LIPASE
下载PDF
Electrospun Poly(acrylonitrile-co-acrylic acid) Nanofibrous Membranes for Catalase Immobilization:Effect of Porphyrin Filling on the Enzyme Activity 被引量:1
16
作者 KE Bei-bei WAN Ling-shu HUANG Xiao-jun XU Zhi-kang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第2期339-344,共6页
Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-... Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-loderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase. Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membrane exhibits an activity retention of 93%, which is an exciting improvement. This improvement is attributed to both the strong catalase-porphyrin affinity and the possible facilitated electron transfer induced by the porphyrin as evidenced by quartz crystal microbalance (QCM) and fluorescence spectroscopy studies. 展开更多
关键词 Enzyme immobilization Nanofibrous membrane Electrospinning Quartz crystal microbalance(QCM) PORPHYRIN
下载PDF
Facile Method to Prepare Metal Sulfide(Ag_2S,CuS,PbS) Nanoparticles Grown on Surface of Polyacrylonitrile Nanofibre and Their Optical Properties 被引量:1
17
作者 ZHANG Chao-qun SUN Jiao +3 位作者 WANG Wei YANG Qing-biao LI Yao-xian DU Jian-shi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第3期534-538,共5页
Polyacrylonitrile-metal sulfide nanocomposites with metal sulfide(Ag2S, CuS, PbS) nanoparticles homo- geneously dispersed on the polyacrylonitrile(PAN) nanofibre were synthesized by means of electrospinning techno... Polyacrylonitrile-metal sulfide nanocomposites with metal sulfide(Ag2S, CuS, PbS) nanoparticles homo- geneously dispersed on the polyacrylonitrile(PAN) nanofibre were synthesized by means of electrospinning techno- logy combined with gas-solid reaction. A series of experiments was performed to characterize the morphology varia- tion and distribution of the nanocrystalline. The result shows that the concentration of metal salt aqueous solution affects the size and morphology of metal sulfide nanoparticles during the chelating process. Further more, these metal ions nanoparticles were attached to the surface of the nanofibre homogeneously through chelating effect which will be propitious to prevent nanoparticles from aggregation. These results suggest that the method reported here is ex- tremely effective for synthesizing PAN-metal sulfide nanocomposites which have good visible light photocatalytic activity. Further more, this method could be extended to prepare other PAN-metal halides nanocomposites, too. 展开更多
关键词 NANOFIBRE ELECTROSPINNING Metal sulfde Visible light catalytic
下载PDF
Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system 被引量:1
18
作者 Na Zhang Liumin He Wutian Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期717-718,共2页
Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.T... Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar. 展开更多
关键词 NSCs Self-assembling peptide nanofibrous hydrogel as a promising strategy in nerve repair after traumatic injury in the nervous system RGD
下载PDF
Welding nanofiber and microsphere with carbon dioxide
19
作者 王冬 王向轲 +1 位作者 高鸿 邢焰 《Journal of Beijing Institute of Technology》 EI CAS 2013年第1期126-129,共4页
Two types of micro/nano structures, microsphere and nanofibre, were prepared by elec- tro spinning technique and spray drying technique, with the soluble fluorinated poly ( ether ether ke- tone) (3F-PEEK) as the m... Two types of micro/nano structures, microsphere and nanofibre, were prepared by elec- tro spinning technique and spray drying technique, with the soluble fluorinated poly ( ether ether ke- tone) (3F-PEEK) as the matrix. The micro/nano structures were exhibited in the scanning electron microscope (SEM) micrograghs, and the separated nanofibre and microsphere were observed. The sizes of micro/nano structures were measured by the statistical analysis method. We designed exper- iments to connect up all the micro/nano structures to form new three dimensional micro/nano struc- tures that were observed by SEM. In the experiments, supercritical carbon dioxide ( C02 ) was se- lected as the welding solvent. A series of nanofibers were welded to form three dimensional netlike structures, and the particles were welded to form a porous film. The welding processes were studied by varying the exposure temperature, and the welding mechanism was discussed. 展开更多
关键词 NANOFIBRE three dimensional netlike supercritical carbon dioxide WELDING
下载PDF
Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate
20
作者 Yuanyuan Jin Siping Ding +1 位作者 Peiyun Li Xuefen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期111-121,共11页
The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal fu... The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal function.Herein,we proposed a novel strategy of thin-film nanofibrous composite(TNFC)dialysis membrane combined with reduced graphene oxide(rGO)aerogel adsorbents for clinical removal of IS as well as high retention of proteins.The TFNC membrane was prepared by electrospinning in conjunction with coating-reaction method and proved to have good selectivity and permeability.To further improve the removal rate of toxins,we used a medium hydrothermal method following by freeze-drying treatment to obtain the r GO aerogel adsorbents.It exhibited excellent adsorption for IS with a maximum adsorption capacity of 69.40 mg·g^(-1)throughπ-πinteraction and hydrogen bonding interaction based on Langmuir isotherm models.Time-dependent absorption experiments showed that it reached adsorption equilibrium within 4 h,which was matched with the hemodialysis time.The coordination was significantly exhibited by introducing r GO aerogel blocks into the dialysate for absorbing the diffused free IS during hemodialysis.Taking the advantages of the TFNC dialysis membrane and the rGO aerogel,the volume of dialysate for hemodialysis was only one-tenth of that without adsorbent blocks but with very comparable dialysis performance(the clearance of IS at 51.8%and the retention of HSA over 98%),which could lighten conventional hemodialysis effectively and be benefit to realize the miniaturization of the hemodialysis equipment.Therefore,the coordination of the TFNC dialysis membrane and rGO aerogel adsorbents would open a new path for the development of portable artificial kidney. 展开更多
关键词 Indoxyl sulfate Thin-film nanofibrous composite membrane rGO aerogel adsorbents HEMODIALYSIS COORDINATION Portable artificial kidney
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部