期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Synergistic Effect and Electrochromic Mechanism of Nanoflake Li-doped NiO in LiOH Electrolyte 被引量:1
1
作者 Kejun Xu Liuying Wang +4 位作者 Gu Liu Chaoqun Ge Long Wang Weichao Wang Mengzhou Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期66-73,共8页
Inorganic metal oxide electrochromic materials have good application prospects for energy-saving windows in buildings and smart display applications.Therefore,the development of electrochromic films with good cycling ... Inorganic metal oxide electrochromic materials have good application prospects for energy-saving windows in buildings and smart display applications.Therefore,the development of electrochromic films with good cycling stabilities,fast color-change response times,and high coloring efficiencies has attracted considerable attention.In this study,nanoflake Li-doped NiO electrochromic films were prepared using a hydrothermal method,and the films exhibited superior electrochromic performances in the LiOH electrolyte.Li^(+)ions doping increased the ion transmission rates of the NiO films,and effectively promoted the transportation of ions from the electrolyte into NiO films.Meanwhile,the nanoflake microstructure caused the NiO films to have larger specific surface areas,providing more active sites for electrochemical reactions.It was determined that the NiO-Li20%film exhibited an ultra-fast response in the LiOH electrolyte(coloring and bleaching times reached 3 and 1.5 s,respectively).Additionally,the coloration efficiency was 62.1 cm^(2)C^(−1),and good cycling stability was maintained beyond 1500 cycles.Finally,the simulation calculation results showed that Li doping weakened the adsorption strengths of the NiO films to OH^(−),which reduced the generation and decomposition of NiOOH and helped to improve the cycling stabilities of the films.Therefore,the research presented in this article provides a strategy for designing electrochromic materials in the future. 展开更多
关键词 electrochromic materials Li-doped NiO films LiOH electrolyte nanoflake
下载PDF
2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances 被引量:14
2
作者 Huicong Xia Jianan Zhang +3 位作者 Zhao Yang Shiyu Guo Shihui Guo Qun Xu 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期62-72,共11页
Metal–organic frameworks(MOFs) are of great interest as potential electrochemically active materials.However, few studies have been conducted into understanding whether control of the shape and components of MOFs can... Metal–organic frameworks(MOFs) are of great interest as potential electrochemically active materials.However, few studies have been conducted into understanding whether control of the shape and components of MOFs can optimize their electrochemical performances due to the rational realization of their shapes. Component control of MOFs remains a significant challenge. Herein, we demonstrate a solvothermal method to realize nanostructure engineering of 2D nanoflake MOFs. The hollow structures withNi/Co-and Ni-MOF(denoted as Ni/Co-MOF nanoflakes and Ni-MOF nanoflakes) were assembled for their electrochemical performance optimizations in supercapacitors and in the oxygen reduction reaction(ORR). As a result, the Ni/CoMOF nanoflakes exhibited remarkably enhanced performance with a specific capacitance of 530.4 F g^(-1)at 0.5 A g^(-1)in1 M LiO H aqueous solution, much higher than that of NiMOF(306.8 F g^(-1)) and ZIF-67(168.3 F g^(-1)), a good rate capability, and a robust cycling performance with no capacity fading after 2000 cycles. Ni/Co-MOF nanoflakes also showed improved electrocatalytic performance for the ORR compared to Ni-MOF and ZIF-67. The present work highlights the significant role of tuning 2D nanoflake ensembles of Ni/Co-MOF in accelerating electron and charge transportation for optimizing energy storage and conversion devices. 展开更多
关键词 Metal–organic frameworks nanoflakeS Spherical microstructure SUPERCAPACITOR Oxygen reduction reaction
下载PDF
Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction 被引量:7
3
作者 Daguo Gu Yao Zhou +3 位作者 Ruguang Ma Fangfang Wang Qian Liu Jiacheng Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期114-125,共12页
A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural featur... A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C_3N_4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6,show the highest N content of ~6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of ~66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal–air batteries. 展开更多
关键词 Nitrogen doping Graphene-like Carbon nanoflakes ELECTROCATALYST Oxygen reduction reaction
下载PDF
Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications 被引量:4
4
作者 Huicong Xia Qun Xu Jianan Zhang 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期122-151,共30页
The rational design and synthesis of two-dimensional(2D) nanoflake ensemble-based materials have garnered great attention owing to the properties of the components of these materials, such as high mechanical flexibili... The rational design and synthesis of two-dimensional(2D) nanoflake ensemble-based materials have garnered great attention owing to the properties of the components of these materials, such as high mechanical flexibility, high specific surface area, numerous active sites,chemical stability, and superior electrical and thermal conductivity. These properties render the 2D ensembles great choices as alternative electrode materials for electrochemical energy storage systems. More recently,recognition of the numerous advantages of these 2D ensemble structures has led to the realization that the performance of certain devices could be significantly enhanced by utilizing three-dimensional(3D) architectures that can furnish an increased number of active sites. The present review summarizes the recent progress in 2D ensemble-based materials for energy storage applications,including supercapacitors, lithium-ion batteries, and sodium-ion batteries. Further, perspectives relating to the challenges and opportunities in this promising research area are discussed. 展开更多
关键词 2D nanoflakes ENSEMBLES 3D architectures SUPERCAPACITORS Lithium-ion batteries Sodium-ion batteries
下载PDF
A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries 被引量:4
5
作者 Dian-Hui Han Meng Zhang +4 位作者 Peng-Xian Lu Yun-Lu Wan Qiu-Ling Chen Hong-Yu Niu Zhi-Wei Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期75-83,I0003,共10页
Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work on... Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work only focus on a single aspect at a time.This paper reports a multifunctional separator coated by Mg(OH)2 nanoflakes with various excellent properties including electrolyte wettability,ionic conductivity,Li+ transference number,puncture strength,thermal stability and flame retardance.When used in LMBs,the Mg(OH)2 nanoflake coatings enable uniform Li+ distributing,which makes it homogeneous to deposit lithium,realizing effective dendrite suppression and less volume expansion.Meanwhile,Mg(OH)2 coatings can ensure LMBs are in normal conditions without thermal runaway until 140 ℃.A part of lithium can be converted into Li+ ions by Mg(OH)2 during repeated charge/discharge cycles,not only reducing the risk of separator damage and consequent short circuit,but also replenishing the capacity loss of LMBs.The Mg(OH)2 nanoflakes can coat on all kinds of commercial separators to improve their performances,which offers a facile but effective strategy for fabricating multifunctional separators and a comprehensive insight into enhancing LMB safety. 展开更多
关键词 Dendrite-free Thermal stability Li metal batteries Multifunctional separators Mg(OH)2 nanoflakes
下载PDF
Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi_(2)MoO_(6) nanoflakes: Dual binding sites governing selective CO_(2) reduction into liquid hydrocarbons 被引量:3
6
作者 Weili Dai Jianfei Long +5 位作者 Lixia Yang Shuqu Zhang Yong Xu Xubiao Luo Jianping Zou Shenglian Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期281-289,I0009,共10页
Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin ... Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6). 展开更多
关键词 CO_(2)photoreduction Ultra-thin Bi_(2)MoO_(6)nanoflake Oxygen vacancy Exposed Mo atom Oxygen migration
下载PDF
Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries 被引量:3
7
作者 Yu Han Shuang-yu Liu +7 位作者 Lei Cui Li Xu Jian Xie Xue-Ke Xia Wen-Kui Hao Bo Wang Hui Li Jie Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期88-93,共6页
A binder-free Ni_3S_2 electrode was prepared directly on a graphene-coated Ni foam(G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni_3S_2 showed a flower-l... A binder-free Ni_3S_2 electrode was prepared directly on a graphene-coated Ni foam(G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni_3S_2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni_3S_2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and ~50 nm, respectively. The free space in the flowers and the thin feature of Ni_3S_2 buffered the volume changes and relieved mechanical strain during repeated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni_3S_2 electrode during cycling. The G/Ni-supported Ni_3S_2 maintained a reversible capacity of 250 mAh·g^(-1) after 100 cycles at 50 mAh^(-1), demonstrating the good cycling stability as a result of the unique microstructure of this electrode material. 展开更多
关键词 GRAPHENE Ni3S2 nanoflakes sodium-ion battery electrochemical performance
下载PDF
Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors 被引量:1
8
作者 Longxing Su Weixin Ouyang Xiaosheng Fang 《Journal of Semiconductors》 EI CAS CSCD 2021年第5期70-78,共9页
Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are... Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are confirmed as ~3.3 and~3.5 eV, respectively. Subsequently, a p-BiOCl/n-ZnO heterostructural photodetector is constructed after a facile mechanical bonding and post annealing process. At –5 V bias, the photocurrent of the device under 350 nm irradiation is ~800 times higher than that in dark, which indicates its strong UV light response characteristic. However, the on/off ratio of In–ZnO–In photodetector is ~20 and the Cu–BiOCl–Cu photodetector depicts very weak UV light response. The heterostructure device also shows a short decay time of 0.95 s, which is much shorter than those of the devices fabricated from pure ZnO thin film and BiOCl nanoflakes. The p-BiOCl/n-ZnO heterojunction photodetector provides a promising pathway to multifunctional UV photodetectors with fast response, high signal-to-noise ratio, and high selectivity. 展开更多
关键词 ZnO thin film BiOCl nanoflakes heterostucture UV photodetector
下载PDF
Electrochemical Synthesis of Novel Zn-Doped TiO_2 Nanotube/ZnO Nanoflake Heterostructure with Enhanced DSSC Efficiency 被引量:1
9
作者 Aijo John K Johns Naduvath +6 位作者 Sudhanshu Mallick Jacob W.Pledger S.K.Remillard P.A.De Young Manju Thankamoniamma T.Shripathi Rachel Reena Philip 《Nano-Micro Letters》 SCIE EI CAS 2016年第4期381-387,共7页
The paper reports the fabrication of Zn-doped TiO_2 nanotubes(Zn-TONT)/ZnO nanoflakes heterostructure for the first time,which shows improved performance as a photoanode in dye-sensitized solar cell(DSSC).The layered ... The paper reports the fabrication of Zn-doped TiO_2 nanotubes(Zn-TONT)/ZnO nanoflakes heterostructure for the first time,which shows improved performance as a photoanode in dye-sensitized solar cell(DSSC).The layered structure of this novel nanoporous structure has been analyzed unambiguously by Rutherford backscattering spectroscopy,scanning electron microscopy,and X-ray diffractometer.The cell using the heterostructure as photoanode manifests an enhancement of about an order in the magnitude of the short circuit current and a seven-fold increase in efficiency,over pure TiO_2 photoanodes.Characterizations further reveal that the Zn-TONT is preferentially oriented in [001] direction and there is a Ti metal-depleted interface layer which leads to better band alignment in DSSC. 展开更多
关键词 Zn-doped TiO2 nanotubes ZnO nanoflakes Heterostructures DSSC
下载PDF
BiIO4 Nanoflakes for the Degradation of Phenol under Simulated Solar Light Irradiation 被引量:1
10
作者 刘敏毅 刘清莹 +2 位作者 郑遗凡 林国良 宋旭春 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第8期1404-1413,共10页
BiIO4 nanoflakes were successfully prepared through a facile hydrothermal method. The as-prepared BiIO4 was characterized by scanning electron microscope(SEM), high-resolution transmission electron microscopy(HRTEM), ... BiIO4 nanoflakes were successfully prepared through a facile hydrothermal method. The as-prepared BiIO4 was characterized by scanning electron microscope(SEM), high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS) and ultraviolet visible diffuse reflectance spectroscopy. BiIO4 nanoflakes showed excellent photocatalytic activity for the degradation of phenol solution under simulated solar irradiation. The influence of synthesis temperature on the morphology, size and photocatalytic performance of BiIO4 was investigated. BiIO4 prepared under 140 ℃ exhibited the highest removal rate of phenol under simulated solar light irradiation. In addition, the parametric studies such as the effect of catalyst loading and phenol solution pH were carried out to optimize the reaction conditions. The active species trapping experiment demonstrated that h+ and ·OH are the major active species during the photocatalytic process. 展开更多
关键词 BiIO4 nanoflakeS PHOTOCATALYTIC
下载PDF
Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
11
作者 张一鸣 刘景 +3 位作者 李春 金蔚 Georgios Lefkidis Wolfgang Hubner 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期520-527,共8页
We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes(GNFs)with transition metal elements attached on the b... We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes(GNFs)with transition metal elements attached on the boundary[TM&GNFs(TM=Fe,Co,Ni)].It is shown that the spin-flip process on TM&GNFs is highly influenced by the involved element species and the position attached to the nanoflakes.Furthermore,taking Ni&GNF as an example,the first-principles tensile test predicts that the variation of the C-Ni bond length plays an important role in the spin density distribution,especially for the low-lying magnetic states,and can therefore dominate the spin-flip processes.The fastest spin-flip scenario is achieved within 80 fs in a Ni&GNF structure under 10%tensile strain along the C-Ni bond.The local deformation modulation of spin flip provides the precursory guidance for further study of ultrafast magnetization control in GNFs,which could lead to potential applications in future integrated straintronic devices. 展开更多
关键词 graphene nanoflakes straintronics spin dynamics strain effect first principles
下载PDF
Assembling Co_9S_8 nanoflakes on Co_3O_4 nanowires as advanced core/shell electrocatalysts for oxygen evolution reaction
12
作者 Shengjue Deng Shenghui Shen +5 位作者 Yu Zhong Kaili Zhang Jianbo Wu Xiuli Wang Xinhui Xia Jiangping Tu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1203-1209,共7页
Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient Co_9S_8@Co_3O_4 core/shell electrocatalysts for oxygen ev... Rational design of advanced cost-effective electrocatalysts is vital for the development of water electrolysis. Herein, we report a novel binder-free efficient Co_9S_8@Co_3O_4 core/shell electrocatalysts for oxygen evolution reaction(OER) via a combined hydrothermal-sulfurization method. The sulfurized net-like Co_9S_8 nanoflakes are strongly anchored on the Co_3O_4 nanowire core forming self-supported binder-free core/shell electrocatalysts. Positive advantages including larger active surface area of Co_9S_8 nanoflakes,and reinforced structural stability are achieved in the Co_9S_8@Co_3O_4 core/shell arrays. The OER performances of the Co_9S_8@Co_3O_4 core/shell arrays are thoroughly tested and enhanced electrocatalytic performance with lower over-potential(260 m V at 20 m A cm^(-2)) and smaller Tafel slopes(56 mV dec-1) as well as long-term durability are demonstrated in alkaline medium. Our proposed core/shell smart design may provide a new way to construct other advanced binder-free electrocatalysts for applications in electrochemical catalysis. 展开更多
关键词 Metal sulfides nanoflakeS NANOWIRES Core/shell arrays ELECTROCATALYSIS Oxygen evolution reaction
下载PDF
Self-motivated,thermally oxidized hematite nanoflake photoanodes:Effects of pre-polishing and ZrO_(2) passivation layer
13
作者 Love Kumar Dhandole Hyun Hwi Lee +2 位作者 Weon-Sik Chae Jum Suk Jang Jae Sung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期415-423,共9页
High-temperature thermal oxidation of an Fe foil produces a high-quality,crystalline hematite nanoflake suitable as a photoanode for the photoelectrochemical(PEC)water oxidation.Physical pre-polishing of the foil surf... High-temperature thermal oxidation of an Fe foil produces a high-quality,crystalline hematite nanoflake suitable as a photoanode for the photoelectrochemical(PEC)water oxidation.Physical pre-polishing of the foil surface has a profound effect in the formation of a vertically-aligned nanoflakes of hematite phase with extended(110)planes by removing the loosely-bonded oxide layer.When the surface of the photoanode is modified with a ZrO_(2) passivation layer and a cobalt phosphate co-catalyst,the charge recombination at the photoanode-electrolyte interface is greatly suppressed to improve its overall PEC activity.As a result,the photocurrent density at 1.10 VRHE under 1 sun condition is enhanced from 0.22 mA cm^(-2) for an unmodified photoanode to 0.59 mA cm^(-2) for the fully modified photoanode,and the photocurrent onset potential is shifted cathodically by 400 mV.Moreover,the photoanode demonstrates outstanding stability by showing steady production of H_(2) and O_(2) gases in the stoichiometric ratio of 2:1 in a continuous PEC operation for 10 h. 展开更多
关键词 Fe foil Thermal oxidation nanoflakeS Photoelectrochemical water splitting Surface modifications
下载PDF
Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
14
作者 邓寒英 黄长明 +1 位作者 何影记 叶芳伟 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期97-105,共9页
A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes(GNFs),including sum-and difference-frequency generation,as well as four-wave mixing.Our analysis s... A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes(GNFs),including sum-and difference-frequency generation,as well as four-wave mixing.Our analysis shows that molecular-scale GNFs support quantum plasmons in the visible spectrum region,and significant enhancement of nonlinear optical wave mixing is achieved.Specifically,the second-and third-order wave-mixing polarizabilities of GNFs are dramatically enhanced,provided that one(or more) of the input or output frequencies coincide with a quantum plasmon resonance.Moreover,by embedding a cavity into hexagonal GNFs,we show that one can break the structural inversion symmetry and enable otherwise forbidden second-order wave mixing,which is found to be enhanced by the quantum plasmon resonance too.This study reveals that the molecular-sized graphene could be used in the quantum regime for nanoscale nonlinear optical devices and ultrasensitive molecular sensors. 展开更多
关键词 quantum plasmons nonlinear optical wave mixing graphene nanoflakes
下载PDF
Adsorption of 1,3,5-Triphenylbenzene Molecules and Growth of Graphene Nanoflakes on Cu(100)Surface
15
作者 刘巧云 宋俊杰 +4 位作者 蔡亦良 乔丹 井立威 何丕模 张寒洁 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期66-70,共5页
Adsorption of 1,3,5-triphenylbenzene(TPB) molecules on Cu( 100) surface is studied using ultraviolet photoelectron spectroscopy(UPS) and density functional theory(DFT) calculations. Researches on the bottom-up fabrica... Adsorption of 1,3,5-triphenylbenzene(TPB) molecules on Cu( 100) surface is studied using ultraviolet photoelectron spectroscopy(UPS) and density functional theory(DFT) calculations. Researches on the bottom-up fabrication of graphene nanoflakes(GNFs) with TPB as a precursor on the Cu(100) surface are carried out based on UPS and DFT calculations. Three emission features d, e and f originating from the TPB molecules are located at 3.095, 7.326 and 9.349 eV below the Fermi level, respectively. With the increase of TPB coverage on the Cu(100) substrate, the work function decreases due to the formation of inter facial dipoles and charge(electron)rearrangement at the TPB/Cu(100) interface. Upon the formation of GNFs, five emission characteristic peaks of g, h, i, j and k originating from the GNFs are located at 1.100, 3.529, 6.984, 8.465 and 9.606 eV below the Fermi level, respectively. Angle resolved ultraviolet photoelectron spectroscopy(ARUPS) and DFT calculations indicate that TPB molecules adopt a lying-down configuration with their molecular plane nearly parallel to the Cu(100) substrate at the monolayer stage. At the same time, the lying-down configuration for the GNFs on the Cu(100) surface is also unveiled by ARUPS and DFT calculations. 展开更多
关键词 TPB Adsorption of 1 3 5-Triphenylbenzene Molecules and Growth of Graphene nanoflakes on Cu SURFACE
下载PDF
Prominent removal of trace lead(Ⅱ)ions from polluted water by terephthalic acid reformed Al/Zn metal organic nanoflakes
16
作者 Junhua Li Lingshu Gao +6 位作者 Junmao Hong Xiaofeng Shi Sifang Kong Jingyu Wang Hassan Algadi Benbin Xu Zhanhu Guo 《Particuology》 SCIE EI CAS CSCD 2024年第1期81-88,共8页
Terephthalic acid reformed Al/Zn metal organic nanoflake was prepared and functionalized with trie-thylamine(T-AlZn).Without adding terephthalic acid,there was no product of metal organic nanoflake.T-AlZn has a remark... Terephthalic acid reformed Al/Zn metal organic nanoflake was prepared and functionalized with trie-thylamine(T-AlZn).Without adding terephthalic acid,there was no product of metal organic nanoflake.T-AlZn has a remarkable performance in removing trace lead(Ⅱ)ions(Pb^(2+)).The adsorption equipoise with the removal rate≥97%was reached within 35 min.The removal rates of T-AlZn for Pb^(2+)declined by only 16.73%after four regenerations.The adsorption of T-AlZn for Pb^(2+)follows the Langmuir isotherms model and pseudo-second-order dynamics model.The utmost adsorption competence was calculated as 215.27 mg g^(-1).The T-AlZn adsorbent exhibits a bright prospect in the adsorption for Pb^(2+)and is a considerable candidate in the disposal of industrial sewage. 展开更多
关键词 Metal organic complex nanoflake Trace level Pb^(2+) ADSORPTION
原文传递
Hot-exciton effects on exciton diffusion and circular polarization dynamics in a single PbI_(2)nanoflake
17
作者 XU ChenYu WANG Lei +2 位作者 CUI Lin GAO BingRong WANG HaiYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期83-90,共8页
As one of the emerging two-dimensional lead halide materials,lead iodide(PbI_(2))nanosheets have proven to possess strong application potential in the fields of high-energy radiation detection and highly efficient per... As one of the emerging two-dimensional lead halide materials,lead iodide(PbI_(2))nanosheets have proven to possess strong application potential in the fields of high-energy radiation detection and highly efficient perovskite solar cells.However,the underlying photophysical properties such as hot-exciton-related carrier dynamics remain unclear for PbI_(2)nanosheets.Here,we report the exciton dynamics of a single PbI_(2)nanoflake prepared by an aqueous solution method.Through a three-dimensional(3D)diffusion model,we obtain the exciton annihilation radius and diffusion coefficient of a single PbI_(2)nanoflake under nonresonant and resonant excitation conditions of band-edge exciton state.As initial exciton densities increase,we find the carrier recombination mechanism for a single PbI_(2)nanoflake gradually changes from exciton-exciton annihilation to free-carrier recombination.Finally,we reveal the room-temperature circular polarization of a single PbI_(2)nanoflake is due to free-carrier recombination with a band-edge exciton dissociation time of~120 fs under the resonant excitation condition. 展开更多
关键词 single PbI_(2)nanoflake exciton diffusion room-temperature circular polarization ultrafast spectroscopy
原文传递
SERS and EC dual-mode detection for dopamine based on WO_(3)-SnO_(2)nanoflake arrays
18
作者 Linya Lu Yan Zhou +1 位作者 Tingting Zheng Yang Tian 《Nano Research》 SCIE EI CSCD 2023年第3期4049-4054,共6页
As an important neurotransmitter,the detection of dopamine(DA)is of great significance for the diagnosis and treatment of neurological diseases.In this study,WO_(3)-SnO_(2)nanoflake arrays were synthesized on fluorine... As an important neurotransmitter,the detection of dopamine(DA)is of great significance for the diagnosis and treatment of neurological diseases.In this study,WO_(3)-SnO_(2)nanoflake arrays were synthesized on fluorine-doped tin oxide(FTO)by hydrothermal synthesis and pulse electrodeposition,revealing significant surface-enhanced Raman scattering(SERS)activity with an enhancement factor(EF)reaching 4.79×10^(7).The obvious EF was mainly ascribed to the charge transfer between WO_(3)-SnO_(2)and methylene blue(MB)based on chemical mechanism(CM)and the molecular resonance effect.With the competitive adsorption of DA and absorbed MB,we prepared a SERS and electrochemical(EC)dual-mode detection platform of DA based on the WO_(3)-SnO_(2)nanoflake arrays.The linear range(LR)was 5.00-1.75×10^(3)nmol/L,and the detection limits(LODs)were as low as 1.50 and 0.80 nmol/L by SERS and EC respectively.Besides,the developed detection platform can shield the interference of many neurotransmitters similar to DA,showing good selectivity and excellent stability.In general,the SERS-EC dual-mode detection platform can be well applied to the detection of DA in cell lysate,demonstrating great potential in diagnosis of neurodegenerative diseases. 展开更多
关键词 surface enhanced Raman scattering electrochemical WO3-SnO2 nanoflake arrays charge transfer DOPAMINE
原文传递
ZnO/PANI nanoflake arrays sensor for ultra-low concentration and rapid detection of NO_(2)at room temperature
19
作者 Qiu-Yue Zheng Meng Yang +5 位作者 Xin Dong Xian-Fa Zhang Xiao-Li Cheng Li-Hua Huo Zoltán Major Ying-Ming Xu 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期536-544,共9页
With the development of environmental monitoring,it is urgent to establish NO_(2)sensor with good sensing performance.Compared with the traditional NO_(2)sensors made of metal oxides,NO_(2)sensors made of n-p heterost... With the development of environmental monitoring,it is urgent to establish NO_(2)sensor with good sensing performance.Compared with the traditional NO_(2)sensors made of metal oxides,NO_(2)sensors made of n-p heterostructure nanocomposites have good sensing performance in detection limit and operating temperature.ZnO nanoflake arrays with polyaniline film grown on the surface were prepared on ceramic tubes by hydrothermal and vapor diffusion method.The gas-phase diffusion method can control the heterostructure by adjusting the diffusion time.At room temperature(25℃),the construction of rich n-p heterogeneous interface enables the sensor prepared by the nanocomposite to respond to NO_(2),showing the sensing performance with the response value of 28.00 to10.00×10^(-6)NO_(2);the detection limit improved to0.01×10^(-6)and the recovery time of 18 s.In this work,the sensing mechanism of NO_(2)at heterogeneous interface is analyzed,which provides a promising material for the detection of low concentration NO_(2)at room temperature. 展开更多
关键词 ZnO/polyaniline(PANI)nanoflake arrays n-p heterostructure Ultra-low concentration NO_(2)gas sensor Rapid detection
原文传递
Chemical vapor deposition synthesis and Raman scattering investigation of quasi-one-dimensional ZrS_(3)nanoflakes
20
作者 Yang Chen Yuanyuan Jin +7 位作者 Junqiang Yang Yizhang Ren Zhuojun Duan Xiao Liu Jian Sun Song Liu Xukun Zhu Xidong Duan 《Nano Research》 SCIE EI CSCD 2023年第7期10567-10572,共6页
Quasi-one-dimensional ZrS_(3)nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy,stemming from the low symmetry in the crystal structure.However,the conventional chemical... Quasi-one-dimensional ZrS_(3)nanoflakes attract intense interest attributed to their superior electrical and optical anisotropy,stemming from the low symmetry in the crystal structure.However,the conventional chemical vapor transport method for synthesizing bulk ZrS_(3)is limited by morphology and size controllability.It is highly desirable to propose a facile way to precisely synthesize ZrS_(3)nanoflakes.In this work,the chemical vapor deposition method is proposed as a feasible way to synthesize ZrS_(3)nanoflakes.The effects of various substrates and temperatures on ZrS_(3)synthesis have been investigated.For the as-grown ZrS_(3),good crystallinity is confirmed with X-ray diffraction and transmission electron microscopy.The structure and interlayer coupling are investigated with Raman scattering spectroscopy.The strong in-plane anisotropy and interlayer coupling of the ZrS_(3)nanoflakes are illustrated with angle-resolved Raman spectroscopy and temperature-dependent Raman characterization,respectively.This study demonstrates a feasible way for the synthesis of transition metal trisulfides,which may shed new light on the research of other two-dimensional anisotropic transition metal materials. 展开更多
关键词 QUASI-ONE-DIMENSIONAL ZrS_(3)nanoflakes chemical vapor deposition method in-plane anisotropy interlayer coupling
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部