Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L1_(2) nano-precipitates at different temperatures,as well as the interactions b...Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L1_(2) nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L1_(2) phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.展开更多
The electroplated(111)-oriented nanotwinned-Cu(nt-Cu) film was utilized as substrate for Ag and Cu sinter joining to improve the weak interface connection between the metal paste and the substrate.It was found that bo...The electroplated(111)-oriented nanotwinned-Cu(nt-Cu) film was utilized as substrate for Ag and Cu sinter joining to improve the weak interface connection between the metal paste and the substrate.It was found that both Cu and Ag sinter joints using(111)-oriented nt-Cu film exhibited a higher bonding strength than that using traditional random-oriented Cu film.Especially,the joints sintered with Cu paste on(111)-oriented nt-Cu film possessed a higher bonding strength of 53.7 MPa at the sintering condition of 300 °C,0.4 MPa in N2 atmosphere,compared to that on random-oriented Cu film with a value of 31.3 MPa.The results show that as metal substrate layer,the(111)-oriented nt-Cu film can improve the connection performance of Ag and Cu sinter joints,which could further promote their application in dieattachment technology for the next-generation power semiconductors.展开更多
Based on molecular dynamics(MD)simulation,the mechanisms of plastic anisotropy in nanotwinned polycrystalline copper with{111}texture during tensile deformation were systematically studied from the aspects of Schmid f...Based on molecular dynamics(MD)simulation,the mechanisms of plastic anisotropy in nanotwinned polycrystalline copper with{111}texture during tensile deformation were systematically studied from the aspects of Schmid factor of the dominant slip system and the dislocation mechanism.The results show that the Schmid factor of dominated slip system is altered by changing the inclining angle of the twin boundaries(TBs),while the yield stress or flow stress does not strictly follow the Schmid law.There exist hard and soft orientations involving different dislocation mechanisms during the tensile deformation.The strengthening mechanism of hard orientation lies in the fact that there exist interactions between the dislocations and the TBs during plastic deformation,which leads to the dislocation blocking and reactions.The softening mechanism of soft orientation lies in the fact that there is no interaction between the dislocations and the TBs because only the slip systems parallel to the TBs are activated and the dislocations slip on the planes parallel to the TBs.It is concluded that the plastic anisotropy in the nanotwinned polycrystalline copper with{111}texture is aroused by the combination effect of the Schmid factor of dominated slip system and the dislocation mechanism.展开更多
The thermal features of the nanograin boundary were described by a developed thermodynamic model. Using the nanocrystalline Cu as an example, the pressure, the bulk modulus, and the volume thermal expansion coef- fici...The thermal features of the nanograin boundary were described by a developed thermodynamic model. Using the nanocrystalline Cu as an example, the pressure, the bulk modulus, and the volume thermal expansion coef- ficient were calculated to characterize the thermodynamic properties of the grain boundaries on the nanoscale. Based on the parabola-type relationship between the excess free energy and the excess volume of the nanograin boundary, the thermal stability, as well as its evolution characteristics, was analyzed. The experimental re- sults of the temperature-varying grain growth in the nanocrystalline Cu, which exhibited the discontinuous nanograin growth behavior, verified the thermodynamic predictions. In addition, the quantitative relationships correlating the excess volume and the lattice expansion with the nanograin size were discussed.展开更多
Nanotwinned polycrystals exhibit an excellent strength-ductility combination due to nanoscale twins and grains. However, nanotwin-assisted grain coarsening under mechanical loading reported in recent experiments may r...Nanotwinned polycrystals exhibit an excellent strength-ductility combination due to nanoscale twins and grains. However, nanotwin-assisted grain coarsening under mechanical loading reported in recent experiments may result in strength drop based on the Hall-Petch law. In this paper, a phase-field model is developed to investigate the effect of coupled evolutions of twin and grain boundaries on nanotwin-assisted grain growth. The simulation result demonstrates that there are three pathways for coupled motions of twin and grain boundaries in a bicrystal under the applied loading, dependent on the amplitude of applied loading and misorientation of the bicrystal. It reveals that a large misorientation angle and a large applied stress promote the twinning-driven grain boundary migration. The resultant twin-assisted grain coarsening is confirmed in the simulations for the microstructural evolutions in twinned and un-twinned polycrystals under a high applied stress.展开更多
Four BT-based ceramic samples were prepared using a grain grading approach.The bigger-grained(~100 nm)and smaller-grained(~70 nm)BaTiO_(3)(BT)powders were mixed.The smaller-grained BT powder controlled the average gra...Four BT-based ceramic samples were prepared using a grain grading approach.The bigger-grained(~100 nm)and smaller-grained(~70 nm)BaTiO_(3)(BT)powders were mixed.The smaller-grained BT powder controlled the average grain size and guaranteed the reliability,while the bigger-grained powder enhanced the dielectric constant.Various percentages of bigger-grained BT powder were introduced to balance the average grain size and the dielectric constant.As the proportion of bigger grains increased,the dielectric constant(εr)improved significantly.The room-temperatureεr of 25%bigger-grain mixed BT(2623)was~50%higher than that of the sample with a similar average grain size without grain grading.The ceramic mixed with 15%bigger-grained BT showed comprehensive dielectric performance,which met the EIA X5R standard and provided a considerableεr of 1841 along with a low dielectric loss of 0.78%.Notably,the average grain size was 90 nm,which favors the applications in ultra-thin multilayer ceramic capacitors.展开更多
Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based o...Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes.展开更多
Plastic-deformation behaviors of gradient nanotwinned(GNT)metallic multilayers are investigated in nanoscale via molecular dynamics simulation.The evolution law of deformation behaviors of GNT metallic multilayers wit...Plastic-deformation behaviors of gradient nanotwinned(GNT)metallic multilayers are investigated in nanoscale via molecular dynamics simulation.The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies(SFEs)during nanoindentation is revealed.The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag,Cu,to Al with SFE increasing.In addition,it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary(TB)strengthening and dislocation strengthening,while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient.The softening mechanism is further analyzed theoretically.These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs,but also give a guideline to design the GNT metallic multilayers with required mechanical properties.展开更多
The three-dimensional(3D)graphene-based materials have raised significant interest due to excellent catalytic performance and unique electronic properties,while the preparation of uniform and stable 3D graphene struct...The three-dimensional(3D)graphene-based materials have raised significant interest due to excellent catalytic performance and unique electronic properties,while the preparation of uniform and stable 3D graphene structures remains a challenge.In this paper,using molecular dynamics simulations,we found that the nanotwinned copper(nt-Cu)matrix with small twin spacing can induce the wave-shaped wrinkling and sawtooth-shaped buckling graphene structures under uniaxial compression.The nt-Cu matrix possesses a symmetrical lattice structure for the lattice rotation with the dislocation annihilation,resulting in the transition of sandwiched graphene from 2D to 3D structures with good uniformity.The newly formed twin boundaries(TBs)in the nt-Cu matrix improve the resistance of graphene against the out-of-plane deformation so that graphene can maintain a stable wrinkling or buckling morphology in a wide strain range.These 3D texturing structures show great flexibility and their micro parameters can be controlled by applying different compressive strains.Furthermore,we propose a simple sliding method for decoupling graphene from the nt-Cu matrix without any damage.This work provides a novel strategy to induce and transfer the uniform wrinkling and buckling of graphene,which may expand the application of graphene in energy storage and catalysts.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12072317)the Natural Science Foundation of Zhejiang Province(Grant No.LZ21A020002)+2 种基金Ligang Sun gratefully acknowledges the support received from the Guangdong Basic and Applied Basic Research Foundation(Grant No.22022A1515011402)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.GXWD20231130102735001)Development and Reform Commission of Shenzhen(Grant No.XMHT20220103004).
文摘Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L1_(2) nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L1_(2) phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.
文摘The electroplated(111)-oriented nanotwinned-Cu(nt-Cu) film was utilized as substrate for Ag and Cu sinter joining to improve the weak interface connection between the metal paste and the substrate.It was found that both Cu and Ag sinter joints using(111)-oriented nt-Cu film exhibited a higher bonding strength than that using traditional random-oriented Cu film.Especially,the joints sintered with Cu paste on(111)-oriented nt-Cu film possessed a higher bonding strength of 53.7 MPa at the sintering condition of 300 °C,0.4 MPa in N2 atmosphere,compared to that on random-oriented Cu film with a value of 31.3 MPa.The results show that as metal substrate layer,the(111)-oriented nt-Cu film can improve the connection performance of Ag and Cu sinter joints,which could further promote their application in dieattachment technology for the next-generation power semiconductors.
基金the National Natural Science Foundation of China(No.51871070).
文摘Based on molecular dynamics(MD)simulation,the mechanisms of plastic anisotropy in nanotwinned polycrystalline copper with{111}texture during tensile deformation were systematically studied from the aspects of Schmid factor of the dominant slip system and the dislocation mechanism.The results show that the Schmid factor of dominated slip system is altered by changing the inclining angle of the twin boundaries(TBs),while the yield stress or flow stress does not strictly follow the Schmid law.There exist hard and soft orientations involving different dislocation mechanisms during the tensile deformation.The strengthening mechanism of hard orientation lies in the fact that there exist interactions between the dislocations and the TBs during plastic deformation,which leads to the dislocation blocking and reactions.The softening mechanism of soft orientation lies in the fact that there is no interaction between the dislocations and the TBs because only the slip systems parallel to the TBs are activated and the dislocations slip on the planes parallel to the TBs.It is concluded that the plastic anisotropy in the nanotwinned polycrystalline copper with{111}texture is aroused by the combination effect of the Schmid factor of dominated slip system and the dislocation mechanism.
基金supported by the National Natural Science Foundation of China (Nos.50401001 and 50671001)the Program for New Century Excellent Talents in University,China (NCET 2006)the Doctorate Foundation of Chinese Education Ministry,China (No.20070005010)
文摘The thermal features of the nanograin boundary were described by a developed thermodynamic model. Using the nanocrystalline Cu as an example, the pressure, the bulk modulus, and the volume thermal expansion coef- ficient were calculated to characterize the thermodynamic properties of the grain boundaries on the nanoscale. Based on the parabola-type relationship between the excess free energy and the excess volume of the nanograin boundary, the thermal stability, as well as its evolution characteristics, was analyzed. The experimental re- sults of the temperature-varying grain growth in the nanocrystalline Cu, which exhibited the discontinuous nanograin growth behavior, verified the thermodynamic predictions. In addition, the quantitative relationships correlating the excess volume and the lattice expansion with the nanograin size were discussed.
基金Project supported by the National Natural Science Foundation of China(No.11672285)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040502)+1 种基金the Collaborative Innovation Center of Suzhou Nano Science and Technologythe Fundamental Research Funds for the Central Universities
文摘Nanotwinned polycrystals exhibit an excellent strength-ductility combination due to nanoscale twins and grains. However, nanotwin-assisted grain coarsening under mechanical loading reported in recent experiments may result in strength drop based on the Hall-Petch law. In this paper, a phase-field model is developed to investigate the effect of coupled evolutions of twin and grain boundaries on nanotwin-assisted grain growth. The simulation result demonstrates that there are three pathways for coupled motions of twin and grain boundaries in a bicrystal under the applied loading, dependent on the amplitude of applied loading and misorientation of the bicrystal. It reveals that a large misorientation angle and a large applied stress promote the twinning-driven grain boundary migration. The resultant twin-assisted grain coarsening is confirmed in the simulations for the microstructural evolutions in twinned and un-twinned polycrystals under a high applied stress.
基金supported by Ministry of Science and Technology of China through The Key Area Research Plan of Guangdong(Grant No.2019B010937001)High-end MLCC Key Project supported by Guangdong Fenghua Advanced Technology Holding Co.,Ltd.(No.20212001429)+1 种基金the National Key Research and Development Program of China(No.2017YFB0406302)the National Natural Science Foundation of China(No.52032005).
文摘Four BT-based ceramic samples were prepared using a grain grading approach.The bigger-grained(~100 nm)and smaller-grained(~70 nm)BaTiO_(3)(BT)powders were mixed.The smaller-grained BT powder controlled the average grain size and guaranteed the reliability,while the bigger-grained powder enhanced the dielectric constant.Various percentages of bigger-grained BT powder were introduced to balance the average grain size and the dielectric constant.As the proportion of bigger grains increased,the dielectric constant(εr)improved significantly.The room-temperatureεr of 25%bigger-grain mixed BT(2623)was~50%higher than that of the sample with a similar average grain size without grain grading.The ceramic mixed with 15%bigger-grained BT showed comprehensive dielectric performance,which met the EIA X5R standard and provided a considerableεr of 1841 along with a low dielectric loss of 0.78%.Notably,the average grain size was 90 nm,which favors the applications in ultra-thin multilayer ceramic capacitors.
基金supported by the National Natural Science Foundation of China(11372214)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(KFJJ17-10M)+1 种基金the support of the NSF Mechanics of Materials Program under CMMI-1162431the support from the Advanced Engineering Programme and School of Engineering,Monash University Malaysia
文摘Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes.
基金the National Natural Science Foundation of China(Grant Nos.51621004,11572118,51871092,and 11772122)the National Key Research and Development Program of China(Grant No.2016YFB0700300)。
文摘Plastic-deformation behaviors of gradient nanotwinned(GNT)metallic multilayers are investigated in nanoscale via molecular dynamics simulation.The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies(SFEs)during nanoindentation is revealed.The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag,Cu,to Al with SFE increasing.In addition,it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary(TB)strengthening and dislocation strengthening,while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient.The softening mechanism is further analyzed theoretically.These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs,but also give a guideline to design the GNT metallic multilayers with required mechanical properties.
基金Australia Research Council Discovery Project(DP170103092)National Natural Science Foundation of China(NSFC51701030).
文摘The three-dimensional(3D)graphene-based materials have raised significant interest due to excellent catalytic performance and unique electronic properties,while the preparation of uniform and stable 3D graphene structures remains a challenge.In this paper,using molecular dynamics simulations,we found that the nanotwinned copper(nt-Cu)matrix with small twin spacing can induce the wave-shaped wrinkling and sawtooth-shaped buckling graphene structures under uniaxial compression.The nt-Cu matrix possesses a symmetrical lattice structure for the lattice rotation with the dislocation annihilation,resulting in the transition of sandwiched graphene from 2D to 3D structures with good uniformity.The newly formed twin boundaries(TBs)in the nt-Cu matrix improve the resistance of graphene against the out-of-plane deformation so that graphene can maintain a stable wrinkling or buckling morphology in a wide strain range.These 3D texturing structures show great flexibility and their micro parameters can be controlled by applying different compressive strains.Furthermore,we propose a simple sliding method for decoupling graphene from the nt-Cu matrix without any damage.This work provides a novel strategy to induce and transfer the uniform wrinkling and buckling of graphene,which may expand the application of graphene in energy storage and catalysts.
基金National Natural Science Foundation of China(No.52201103)Natural Science Basis Research Plan in Shaanxi Province of China(No.2023JCYB445)Fundamental Research Funds for the Central Universities of CHD(Nos.300102122201,300102122106)。