期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A flat-based plasmonic fiber probe for nanoimaging 被引量:2
1
作者 Fei Wang Shaobo Li +6 位作者 Shuhao Zhao Ze Zhang Peirui Ji Chengsheng Xia Biyao Cheng Guofeng Zhang Shuming Yang 《Nano Research》 SCIE EI CSCD 2023年第5期7545-7549,共5页
The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber prob... The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber probe(FPFP).The simulation results show that the probe can obtain a nanofocusing spot at the tip with the radially polarized mode.The Fabry–Pérot interference structure is used to control the plasmon propagation on the surface of the probe,it effectively improves the local spot intensity at the tip.Furthermore,the experimental results verify that the FPFP(tip curvature radius is 20 nm)prepared by chemical etching method can obtain a nanofocusing spot at the tip.The nanoimaging of the gold slit structure demonstrates the nanoimaging capability of the FPFP,the 36.9 nm slit width is clearly identified by the FPFP. 展开更多
关键词 optical probe nanoimaging controlling plasmon propagation nanofocusing local electric field enhancement
原文传递
Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps 被引量:1
2
作者 Song Jiang Xianbiao Zhang +7 位作者 Yao Zhang Chunrui Hu Rui Zhang Yang Zhang Yuan Liao Zachary J Smith Zhenchao Dong JG Hou 《Light(Science & Applications)》 SCIE EI CAS CSCD 2017年第1期382-389,共8页
Tip-enhanced Raman spectroscopy(TERS)is a powerful surface analysis technique that can provide subnanometer-resolved images of nanostructures with site-specific chemical fingerprints.However,due to the limitation of w... Tip-enhanced Raman spectroscopy(TERS)is a powerful surface analysis technique that can provide subnanometer-resolved images of nanostructures with site-specific chemical fingerprints.However,due to the limitation of weak Raman signals and the resultant difficulty in achieving TERS imaging with good signal-to-noise ratios(SNRs),the conventional single-peak analysis is unsuitable for distinguishing complex molecular architectures at the subnanometer scale.Here we demonstrate that the combination of subnanometer-resolved TERS imaging and advanced multivariate analysis can provide an unbiased panoramic view of the chemical identity and spatial distribution of different molecules on surfaces,yielding high-quality chemical images despite limited SNRs in individual pixel-level spectra.This methodology allows us to exploit the full power of TERS imaging and unambiguously distinguish between adjacent molecules with a resolution of~0.4 nm,as well as to resolve submolecular features and the differences in molecular adsorption configurations.Our results provide a promising methodology that promotes TERS imaging as a routine analytical technique for the analysis of complex nanostructures on surfaces. 展开更多
关键词 chemical imaging hyperspectral imaging multivariate analysis nanoimaging tip-enhanced Raman spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部