Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced...Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials.展开更多
The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading wher...The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading where the load-bearing capacity and change in the structural configuration are studied on the basal(Z-direction)and two prismatic planes(X-and Y-directions)with varying indenter velocities.The investigation of structural evolution is done using atomic displacement analyses to measure the net magnitude of displacement,atomic strain analyses to evaluate the shear strain developed in the process,and Wigner-Seitz defect analyses to calculate the total vacancies at varied timesteps.Furthermore,Voronoi analyses are done when indented on the basal plane to identify the cluster distribution at different planar depths of the specimen.From the analyses,it has been observed that the load-bearing capacity of the specimen varies with the indentation velocity and the direction of indentation on the specimen.Additionally,it is seen that the observed shear and total atomic displacement in the Z-direction is the least in comparison to the other two axes.The partial dislocation 1/3<-12-10>is seen to be majorly present and the population of dislocation loops is more abundant for lower indenter velocities.Furthermore,clusters<0,4,4,6>and<0,6,0,8>are the major indices developed during nanoindentation on the basal plane where they exhibit symmetrical distribution as observed from the Z-direction.展开更多
In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations ...In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys.展开更多
Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implant...Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants,it is essential to study the failure mechanisms associated with nanoindentation,such as fracture,delamination,and chipping.The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy,depending on indenter shape,substrate type,crystallographic properties,pre-existing flaws,internal microcracks,and pre-strain.Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process,showing that the fracture morphology is affected by the interaction of different cracking events.The interfacial fracture energy,toughness,and residual stress are calculated using existing models with minor adjustments,and it is found that increasing the indenter sharpness improves the shear stress distribution,making the coating more prone to separation.Depending on the prevailing type of stress,the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening.Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction,and because of its stronger induced plasticity than that of a Berkovich indenter tip,a sharper cube-corner tip produces more resistance.展开更多
The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation st...The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level.In this study,a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior.A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results.The indentation force-displacement curves,stress distributions,and pile-up patterns are obtained by CPFEM simulation.The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation,but significantly influence the local stress distributions and shape of the pile-up patterns.As the difference in crystallographic orientation between grains increases,changes in the pile-up patterns and stress distributions caused by this effect become more significant.In addition,the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution.The obstruction on the continuity of stress distribution increases as the grain boundary angle increases.This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation.展开更多
The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoin...The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoindentation results show that tungsten nanowhiskers exhibit a hardness of (6.2±1.7) GPa and an elastic modulus of (225±20) GPa. According to the comparative test results, the tungsten nanowhiskers possess a comparable hardness to tungsten microwhiskers, and an hardness increase of 35% to the bulk single-crystal tungsten. The increase in the hardness of whiskers is attributed to the lacking of dislocation avalanche observed in the bulk single-crystal tungsten. The measured modulus is about 80% that of the tungsten microwhiskers, which can be contributed to the size effects of the nanowhiskers and the substrate effects in the nanoindentation test.展开更多
In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim...In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.展开更多
In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight in...In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight into their creep characteristics,an efficient and robust researching technique,nanoindentation,was applied to investigate the creep performances of coal and rock samples obtained from two coal mines in the east of China.Creep characteristics were reflected by evaluating the curves of creep depth versus creep time of nanoindentation tests during the load-holding period at the peak load of 30 mN.These curves can be divided into two stages:transient stage and steady stage;and the time of load-holding period of 5 s,which is the dividing point between two stages,can efficiently avoid the influence of creep displacement on the unloading curves.The exponential function can perfectly fit creep curves and Kelvin model can be used to calculate the rheological parameters of coal and rock samples.Calculated results yield values for the creep modulus and viscosity terms of coal and rock.This study also settled a particular emphasis on the selection of the positions of indentations to obtain the rheological properties of mineralogical constituents in heterogonous coal and rock samples and their elastic aftereffect.展开更多
The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg ...The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg to hold and impel dung ball. Its two foreleges as digging legs are developed. The factors impacting the nanoindentation testing results of the femur cuticle of forelegs of dung beetle Copris ochus Motschulsky were examined. The nanomechanical test instrument used for the tests was Hysitron nanomechanical system. The results shown that the holding time and loading time are important factors im- pacting the accuracy of such indentation properties as reduced modulus (Er) and the harness ( H ) of the femur cuticle of the forelegs of dung beetle Copris ochus Motschulsky in nanoscale. There exists a threshold holding time of 20 s for the reduced modulus of the femur cuticle. The tests of nanoindentation creep property and the regression analysis of relationship between the depth increment at the maximum load and the time further confirmed the correction of the above threshold holding time. There exist visco-elastic-plastic behaviour and creep phenomenon in the femur cuticle during indenting. Its creep property during the holding procedure at maximum load can be regressed by a general logarithmic equation. The equation fitted by the testing data is ? h = 54.83452 ln(0.00723t +1.00486), where, ? h is the depth increment at the maximum load and t is the time.展开更多
The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanica...The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.展开更多
To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected ...To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected zone,partially melted zone,weld metal near the fusion boundary and weld metal center.The results showed that the strengthening effect of weld metal was more obvious than that of heat affected zone for nickel based welded joint and especially in coarse grained heat affected zone,the hardening resulted from overheating was not apparent.Nickel based weld metal with high content of alloying elements which were often segregated at interdendritic regions or precipitated in grain interior under nonequilibrium solidification contributed to the characteristics that differ from conventional low alloy steel welded joint.展开更多
The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulu...The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one.展开更多
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo...Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.展开更多
Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical micro...Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.展开更多
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ...In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.展开更多
Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor de...Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as (67.0±(6.9) GPa) on average which is in reasonable agreement with the results reported in literature. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect.展开更多
Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because o...Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because of the complex stress-strain field and the small scale of the deformation under the nanoindenter,the results can be easily influenced by artifacts induced during sample preparation.In this work,a systematic study was conducted to better understand the influence of sample preparation methods on the nanoindentation results of ductile metals.All experiments were conducted on a steel(Fe-22Mn-0.65C,wt%)with twinning-induced plasticity(TWIP),which was selected for its large grain size and sensitivity to different surface preparation methods.By grouping the results obtained from each nanoindent,chemical polishing was found to be the best sample preparation method with respect to the resulting mechanical properties of the material.In contrast,the presence of a deformation layer left by mechanical polishing and surface damage induced by focused ion beam(FIB)scanning were confirmed by the dislocation-nucleation-induced pop-in events of nanoindentation.展开更多
To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data...To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice.展开更多
In the present work, a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal. The substrate indenter system is modeled using hybrid interatomic p...In the present work, a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal. The substrate indenter system is modeled using hybrid interatomic potentials including the many-body potential embedded atom method (EAM), and two-body morse potential. To simulate the in- dentation process, a spherical indenter (diameter = 80A, 1A=0.1 nm) is chosen. The results show that the mechanical behaviour of a monolithic Ni is not affected by crystalline orientation. To elucidate the effect of a heterogeneous interface, three bilayer interface systems are constructed, namely Ni(100)/Cu(111), Ni(110)/Cu(111), and Ni(111)/Cu(111). The simulations along these systems clearly describe that mechanical behaviour directly depends on the lattice mismatch. The interface with the smaller mismatch between the specified crystal planes is proved to be harder and vice versa. To describe the relationship between film thickness and interface effect, we choose various values of film thickness ranging from 20 A to 50 A to perform the nanoindentation experiment. It is observed that the interface is significant only for the relatively small thickness of film and the separation between interface and the indenter tip. It is shown that with the increase in film thickness, the mechanical behaviour of the film shifts more toward that of monolithic material.展开更多
The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the ...The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11572090)。
文摘Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials.
文摘The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading where the load-bearing capacity and change in the structural configuration are studied on the basal(Z-direction)and two prismatic planes(X-and Y-directions)with varying indenter velocities.The investigation of structural evolution is done using atomic displacement analyses to measure the net magnitude of displacement,atomic strain analyses to evaluate the shear strain developed in the process,and Wigner-Seitz defect analyses to calculate the total vacancies at varied timesteps.Furthermore,Voronoi analyses are done when indented on the basal plane to identify the cluster distribution at different planar depths of the specimen.From the analyses,it has been observed that the load-bearing capacity of the specimen varies with the indentation velocity and the direction of indentation on the specimen.Additionally,it is seen that the observed shear and total atomic displacement in the Z-direction is the least in comparison to the other two axes.The partial dislocation 1/3<-12-10>is seen to be majorly present and the population of dislocation loops is more abundant for lower indenter velocities.Furthermore,clusters<0,4,4,6>and<0,6,0,8>are the major indices developed during nanoindentation on the basal plane where they exhibit symmetrical distribution as observed from the Z-direction.
基金supported by the National Science Foundation (Division of Materials Research,Program Manager: Dr.Jonathan Madison) under Grant No.2144973financially supported by the startup fund from Drexel University。
文摘In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys.
文摘Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants,it is essential to study the failure mechanisms associated with nanoindentation,such as fracture,delamination,and chipping.The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy,depending on indenter shape,substrate type,crystallographic properties,pre-existing flaws,internal microcracks,and pre-strain.Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process,showing that the fracture morphology is affected by the interaction of different cracking events.The interfacial fracture energy,toughness,and residual stress are calculated using existing models with minor adjustments,and it is found that increasing the indenter sharpness improves the shear stress distribution,making the coating more prone to separation.Depending on the prevailing type of stress,the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening.Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction,and because of its stronger induced plasticity than that of a Berkovich indenter tip,a sharper cube-corner tip produces more resistance.
基金Supported by National Natural Science Foundation of China(Grant Nos.52130511,52075174).
文摘The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level.In this study,a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior.A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results.The indentation force-displacement curves,stress distributions,and pile-up patterns are obtained by CPFEM simulation.The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation,but significantly influence the local stress distributions and shape of the pile-up patterns.As the difference in crystallographic orientation between grains increases,changes in the pile-up patterns and stress distributions caused by this effect become more significant.In addition,the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution.The obstruction on the continuity of stress distribution increases as the grain boundary angle increases.This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation.
基金Projects(50804057,51074188) supported by the National Natural Science Foundation of ChinaProject(08C580) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2012T50703,2011M500128) supported by China Postdoctoral Science Foundation Funded Project and Postdoctoral Science Foundation of Central South University,China
文摘The Mechanical properties of the hexagonal tungsten nanowhiskers, which were synthesized by chemical vapor deposition, were characterized by instrumented nanoindentation and atomic force microscope (AFM). The nanoindentation results show that tungsten nanowhiskers exhibit a hardness of (6.2±1.7) GPa and an elastic modulus of (225±20) GPa. According to the comparative test results, the tungsten nanowhiskers possess a comparable hardness to tungsten microwhiskers, and an hardness increase of 35% to the bulk single-crystal tungsten. The increase in the hardness of whiskers is attributed to the lacking of dislocation avalanche observed in the bulk single-crystal tungsten. The measured modulus is about 80% that of the tungsten microwhiskers, which can be contributed to the size effects of the nanowhiskers and the substrate effects in the nanoindentation test.
基金The National Natural Science Foundation of Chin(No.51305208)
文摘In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.
基金the projects of the Fundamental Research Funds for the Central Universities(2020ZDPY0221)the Guizhou Science and Technology Department([2020]2Y026)。
文摘In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight into their creep characteristics,an efficient and robust researching technique,nanoindentation,was applied to investigate the creep performances of coal and rock samples obtained from two coal mines in the east of China.Creep characteristics were reflected by evaluating the curves of creep depth versus creep time of nanoindentation tests during the load-holding period at the peak load of 30 mN.These curves can be divided into two stages:transient stage and steady stage;and the time of load-holding period of 5 s,which is the dividing point between two stages,can efficiently avoid the influence of creep displacement on the unloading curves.The exponential function can perfectly fit creep curves and Kelvin model can be used to calculate the rheological parameters of coal and rock samples.Calculated results yield values for the creep modulus and viscosity terms of coal and rock.This study also settled a particular emphasis on the selection of the positions of indentations to obtain the rheological properties of mineralogical constituents in heterogonous coal and rock samples and their elastic aftereffect.
文摘The cuticle of dung beetle is a layered composite material in micro- or nano-scale. Dung beetle can fly, walk and dig. It can shovel and compact dung of mammals into balls. It use foreleg to walk, midleg and hindleg to hold and impel dung ball. Its two foreleges as digging legs are developed. The factors impacting the nanoindentation testing results of the femur cuticle of forelegs of dung beetle Copris ochus Motschulsky were examined. The nanomechanical test instrument used for the tests was Hysitron nanomechanical system. The results shown that the holding time and loading time are important factors im- pacting the accuracy of such indentation properties as reduced modulus (Er) and the harness ( H ) of the femur cuticle of the forelegs of dung beetle Copris ochus Motschulsky in nanoscale. There exists a threshold holding time of 20 s for the reduced modulus of the femur cuticle. The tests of nanoindentation creep property and the regression analysis of relationship between the depth increment at the maximum load and the time further confirmed the correction of the above threshold holding time. There exist visco-elastic-plastic behaviour and creep phenomenon in the femur cuticle during indenting. Its creep property during the holding procedure at maximum load can be regressed by a general logarithmic equation. The equation fitted by the testing data is ? h = 54.83452 ln(0.00723t +1.00486), where, ? h is the depth increment at the maximum load and t is the time.
基金Supported by National Natural Science Foundation of China(Grant No.51275444)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20121333110003)Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China(Grant No.E2014203271)
文摘The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.
基金supported by the Primary Research&Developement Plan of Jiangsu Province(BE2017168)
文摘To quantify the nonuniform micromechanical performance of welded joint,the load-displacement curves by nanoindentation test were introduced to examine different zones including base metal,coarse grained heat affected zone,partially melted zone,weld metal near the fusion boundary and weld metal center.The results showed that the strengthening effect of weld metal was more obvious than that of heat affected zone for nickel based welded joint and especially in coarse grained heat affected zone,the hardening resulted from overheating was not apparent.Nickel based weld metal with high content of alloying elements which were often segregated at interdendritic regions or precipitated in grain interior under nonequilibrium solidification contributed to the characteristics that differ from conventional low alloy steel welded joint.
基金This work was supported by National Natural Science Foundation of China (grant no.30600131, 50675087);by National Science Fund for Distinguished Young Scholars of China (grant no. 50025516);by Special Research Fund for the Doctoral Program of High Education of China (grant no. 20060183067) ;by "Project 985" of Jilin University.
文摘The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one.
基金Project (51171125) supported by the National Natural Science Foundation of China Project (20110321051 ) supported by the Science and Technology Key Project of Shanxi Province, China
文摘Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.
基金Project(61391) supported by the National Security Basic Research Program of ChinaProject (91016029) supported by the National Natural Science Foundation of China
文摘Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.
基金The research was supported by the National Basic Research Program of China (Grant 2012CB937500),the National Natural Science Foundation of China (Grants 91216108,11432014),and the CAS/SAFEA International Partnership Program for Creative Reserch Teams
文摘In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.
文摘Nanoindentation tests performed in a commercial atomic force microscope have been utilized to directly measure the elastic modulus and the hardness of single crystal copper thin films fabricated by the vacuum vapor deposition technique. Nanoindentation tests were conducted at various indentation depths to study the effect of indentation depths on the mechanical properties of thin films. The results were interpreted by using the Oliver-Pharr method with which direct observation and measurement of the contact area are not required. The elastic modulus of the single crystal copper film at various indentation depths was determined as (67.0±(6.9) GPa) on average which is in reasonable agreement with the results reported in literature. The indentation hardness constantly increases with decreasing indentation depth, indicating a strong size effect.
文摘Nanoindentation is an attractive characterization technique,as it not only measures the local properties of a material but also facilitates understanding of deformation mechanisms at submicron scales.However,because of the complex stress-strain field and the small scale of the deformation under the nanoindenter,the results can be easily influenced by artifacts induced during sample preparation.In this work,a systematic study was conducted to better understand the influence of sample preparation methods on the nanoindentation results of ductile metals.All experiments were conducted on a steel(Fe-22Mn-0.65C,wt%)with twinning-induced plasticity(TWIP),which was selected for its large grain size and sensitivity to different surface preparation methods.By grouping the results obtained from each nanoindent,chemical polishing was found to be the best sample preparation method with respect to the resulting mechanical properties of the material.In contrast,the presence of a deformation layer left by mechanical polishing and surface damage induced by focused ion beam(FIB)scanning were confirmed by the dislocation-nucleation-induced pop-in events of nanoindentation.
基金Projects(50531060,10525211,10828205)supported by the National Natural Science Foundation of ChinaProject(10525211)supported by National Science Found for Distinguished Young Scholars of ChinaProject(076044)supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice.
文摘In the present work, a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal. The substrate indenter system is modeled using hybrid interatomic potentials including the many-body potential embedded atom method (EAM), and two-body morse potential. To simulate the in- dentation process, a spherical indenter (diameter = 80A, 1A=0.1 nm) is chosen. The results show that the mechanical behaviour of a monolithic Ni is not affected by crystalline orientation. To elucidate the effect of a heterogeneous interface, three bilayer interface systems are constructed, namely Ni(100)/Cu(111), Ni(110)/Cu(111), and Ni(111)/Cu(111). The simulations along these systems clearly describe that mechanical behaviour directly depends on the lattice mismatch. The interface with the smaller mismatch between the specified crystal planes is proved to be harder and vice versa. To describe the relationship between film thickness and interface effect, we choose various values of film thickness ranging from 20 A to 50 A to perform the nanoindentation experiment. It is observed that the interface is significant only for the relatively small thickness of film and the separation between interface and the indenter tip. It is shown that with the increase in film thickness, the mechanical behaviour of the film shifts more toward that of monolithic material.
基金supported by the Key Project of National Natural Science Foundation of China (No.50535020)
文摘The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.