Silver nanowire(AgNW) film was proposed to apply on the surface of the vertical-cavity surface-emitting lasers(VCSELs) with large aperture in order to obtain a uniform current distribution in the active region and...Silver nanowire(AgNW) film was proposed to apply on the surface of the vertical-cavity surface-emitting lasers(VCSELs) with large aperture in order to obtain a uniform current distribution in the active region and a better optical beam quality.Optimization of the AgNW film was carried out with the sheet resistance of 28.4 Ω/sq and the optical transmission of 94.8% at 850 nm.The performance of VCSELs with and without AgNW film was studied.When the AgNW film was applied to the surface of VCSELs,due to its better current spreading effect,the maximum output optical power increased from 23.4 mW to 24.4 mW,the lasing wavelength redshift decreased from 0.085 nm/mA to 0.077 nm/mA,the differential resistance decreased from 23.95 Ω to 21.13 Ω,and the far field pattern at 50 mA decreased from 21.6° to 19.2°.At the same time,the near field test results showed that the light in the aperture was more uniform,and the far field exhibited a better single peak characteristic.Various results showed that VCSELs with AgNW on the surface showed better beam quality.展开更多
Single molecule detection based on nanopore technology is a very promising approach for medical diagnostics, drug therapy and even DNA sequencing. Compared with other biological nanopores and solid-state nanopores, th...Single molecule detection based on nanopore technology is a very promising approach for medical diagnostics, drug therapy and even DNA sequencing. Compared with other biological nanopores and solid-state nanopores, the glass capillary nanopore has low cost, easy availability and stable mechanical characteristics, thus it has been widely used in the nanopore technology for single molecule detection. In this review, we will focus on the studies of the glass nanopore sensors. The popular glass nanopore fabrication methods would be introduced, and the applications of glass nanopores in the detection of nanoparticles, proteins and DNA molecules would be presented. We hope this review will help widen field of vision and promote the development of the nanopore technology based on the glass capillary nanopores.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61335004 and 61505003)the National High Technology Research and Development Program of China(Grant No.2015AA017101)the National Key Research and Development of China(Grant No.2016YFB0400603)
文摘Silver nanowire(AgNW) film was proposed to apply on the surface of the vertical-cavity surface-emitting lasers(VCSELs) with large aperture in order to obtain a uniform current distribution in the active region and a better optical beam quality.Optimization of the AgNW film was carried out with the sheet resistance of 28.4 Ω/sq and the optical transmission of 94.8% at 850 nm.The performance of VCSELs with and without AgNW film was studied.When the AgNW film was applied to the surface of VCSELs,due to its better current spreading effect,the maximum output optical power increased from 23.4 mW to 24.4 mW,the lasing wavelength redshift decreased from 0.085 nm/mA to 0.077 nm/mA,the differential resistance decreased from 23.95 Ω to 21.13 Ω,and the far field pattern at 50 mA decreased from 21.6° to 19.2°.At the same time,the near field test results showed that the light in the aperture was more uniform,and the far field exhibited a better single peak characteristic.Various results showed that VCSELs with AgNW on the surface showed better beam quality.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707605)National Natural Science Foundation of China(Grant No.51375092)+1 种基金the support by the Fundamental Research Funds for the Central Universities(Grant No.2242015R30002)supported by the Fundamental Research Funds for the Central Universities and the Innovative Project for Graduate Students of Jiangsu Province(Grant No.KYLX_0100)
文摘Single molecule detection based on nanopore technology is a very promising approach for medical diagnostics, drug therapy and even DNA sequencing. Compared with other biological nanopores and solid-state nanopores, the glass capillary nanopore has low cost, easy availability and stable mechanical characteristics, thus it has been widely used in the nanopore technology for single molecule detection. In this review, we will focus on the studies of the glass nanopore sensors. The popular glass nanopore fabrication methods would be introduced, and the applications of glass nanopores in the detection of nanoparticles, proteins and DNA molecules would be presented. We hope this review will help widen field of vision and promote the development of the nanopore technology based on the glass capillary nanopores.