A new nanometer material, nano-Al2O3 with carbon fibre as the carrier, was employed for the removal of Cd with low concentrations from polluted water. The characterization of the material was carried out by means of S...A new nanometer material, nano-Al2O3 with carbon fibre as the carrier, was employed for the removal of Cd with low concentrations from polluted water. The characterization of the material was carried out by means of SEM and TEM. Batch adsorption and elution experiments were carried out to determine the adsorption properties of Cd on the new adsorbent. The classical Thomas model was applied to estimating the equilibrium coefficients of Cd adsorption and the saturated adsorption ability. The results show that the Thomas model is fit for describing the kinetic adsorption process, and the maximum adsorption capacity of the nanometer Al2O3/carbon is 69.29 mg/g. The resulting information also indicates that the desorption of Cd eluted with de-ionized water at a rate of 9.8 mL/min can be neglected. With the advantage of a high adsorption capacity for removing low concentration Cd, the Al2O3/carbon fibre possesses the potentiality to be an effective adsorbent for the removal of Cd from polluted water.展开更多
基金Supported by the Starting Foundation for Graduated Doctors in Jilin University(No.420010302353).
文摘A new nanometer material, nano-Al2O3 with carbon fibre as the carrier, was employed for the removal of Cd with low concentrations from polluted water. The characterization of the material was carried out by means of SEM and TEM. Batch adsorption and elution experiments were carried out to determine the adsorption properties of Cd on the new adsorbent. The classical Thomas model was applied to estimating the equilibrium coefficients of Cd adsorption and the saturated adsorption ability. The results show that the Thomas model is fit for describing the kinetic adsorption process, and the maximum adsorption capacity of the nanometer Al2O3/carbon is 69.29 mg/g. The resulting information also indicates that the desorption of Cd eluted with de-ionized water at a rate of 9.8 mL/min can be neglected. With the advantage of a high adsorption capacity for removing low concentration Cd, the Al2O3/carbon fibre possesses the potentiality to be an effective adsorbent for the removal of Cd from polluted water.