Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle ...Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics.展开更多
In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the defo...In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the deformed RTR at EP,frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR.In addition,EP induced a result that the far feld pattern of chiral mode responses signifcantly to external perturbation,corresponding to the change in internal chirality.Therefore,single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far feld directional emission.Compared to traditional frequency splitting,the far feld pattern produced in deformed RTR provides a cost-efective and convenient path to detect single nanoparticle at a long distance,without using tunable laser and external coupler.Our structure indicates great potential in high sensitivity sensor and label-free detector.展开更多
In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At ...In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At the time,no one anticipated their high potential in basic research or for medical diagnostic andtreatment. Since then, SPIO have been evaluated notonly as spe- cific markers for MRI, but also for cell labeling and tracking (Li et al., 2013).展开更多
Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which t...Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.展开更多
The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry w...The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0^(-8)-7.0×10~6 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples.展开更多
Arsenic(As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In...Arsenic(As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In past decades, surface-enhanced Raman scattering(SERS)has gained a reputation as one of the most sensitive spectroscopic methods for chemical and biomolecular sensing. The SERS technique has emerged as an extremely promising solution for in-situ detection of arsenic species in the field, particularly when coupled with portable/handheld Raman spectrometers. In this article, the recent advances in SERS analysis of arsenic species in water media are reviewed, and the potential of this technique for fast screening and field testing of arsenic-contaminated environmental water samples is discussed. The problems that remain in the field are also discussed and an outlook for the future is featured at the end of the article.展开更多
Concerns over exposure to mercury have motivated the exploration of cost-effective,rapid,and reliable method for monitoring Hg^2+ in the environment.Recently,surface-enhanced Raman scattering(SERS) has become a pro...Concerns over exposure to mercury have motivated the exploration of cost-effective,rapid,and reliable method for monitoring Hg^2+ in the environment.Recently,surface-enhanced Raman scattering(SERS) has become a promising alternative method for Hg^2+ analysis.SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures,resulting in substantially increased Raman signals.When Hg^2+ is in a close contact with metallic nanostructures,the SERS effect provides unique structural information together with ultrasensitive detection limits.This review introduces the principles and contemporary approaches of SERS-based Hg^2+detection.In addition,the perspective and challenges are briefly discussed.展开更多
In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing ...In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing DNA on Au nanoparticles and a self-assembled monolayer of cysteamine modified Au electrode. The assembly processes of cysteamine, Au nanoparticles and DNA were characterized by cyclic voltammetry (CV). The Au nanoparticles enhanced DNA immobilization resulting in an increased guanine signal. The interaction of the analyte with the immobilized DNA was measured through the variation of the electrochemical signal of guanine by square wave voltammetry (SWV). The biosensor was able to detect the known genotoxic compounds: 2-anthramine, acridine orange and 2- naphthylamine with detection limits of 2, 3 and 50 nmol/L, respectively. The biosensor was also used to test actual water samples to evaluate the contamination level. Additionally, the comparison of results from the classical genotoxiciw bioassay has confirmed the applicability of the method for real samoles.展开更多
A simple, cheap and non-enzymatic colorimetric strategy for glucose detection has been designed based on the interactions between a phenylboronic acid (PBA) derivative, which is coupled with gold nanoparticles (Au...A simple, cheap and non-enzymatic colorimetric strategy for glucose detection has been designed based on the interactions between a phenylboronic acid (PBA) derivative, which is coupled with gold nanoparticles (AuNPs) as the colorimetric reporters, and glucose. The PBA-AuNPs hybrid system proposed here exhibits ordered photochemistry behaviors upon the addition of glucose at different pH values. There are two linear regions of glucose concentration for the glucose sensor at different pH values, i.e., between 0.1 mmol/L and 9.8 mmol/L at pH 6 with the detection limit of 64μmol/L and between 0 and 6.5 mmol/L with the detection limit of 48 μmol/L at pH 9, respectively. To test the practicality of the sensor system, we also applied this assay to detect a glucose sample in the artificial saliva.展开更多
Biocompatible NaREF_4(RE=0.4Y+0.4La+0.2(Yb,Er,Tm)(molar ratio)) upconversion nanoparticles(UCNPs) with strong visible fluorescence were synthesized by a solvothermal method and subsequent surface modificatio...Biocompatible NaREF_4(RE=0.4Y+0.4La+0.2(Yb,Er,Tm)(molar ratio)) upconversion nanoparticles(UCNPs) with strong visible fluorescence were synthesized by a solvothermal method and subsequent surface modification. Modulated upconversion luminescence emission spectra were obtained via changing the doping. In vitro and in vivo bioimagings were carried out with shrimps. The upconversion nanoprobes with an acidic/PEG hybrid ligand could quickly capture the basic Rhodamine-B(RB) in shrimp cells and formed a close UCNPs@RB system. The residual organic dye RB in shrimps could be detected on the basis of luminescent resonance energy transfer(LRET). It could be rapidly addressed based on LRET detection that RB residue existed in the shrimps after incubating in the aqueous solution of RB higher than 3 μg/m L for 12 h.展开更多
Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome p...Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.U2233206,61674114,and 91743110)the National Key R&D Program of China(Grant No.2021YFC3002204)+1 种基金Tianjin Applied Basic Research and Advanced Technology(Grant No.17JCJQJC43600)the 111 Project(Grant No.B07014).
文摘Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)(Grant Nos.62022053 and 62205192)in part by the Science and Technology Commission of Shanghai Municipality Project(22010500100,22ZR1424800)+1 种基金in part by the Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF002)and in part by the 111 Project(D20031).
文摘In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the deformed RTR at EP,frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR.In addition,EP induced a result that the far feld pattern of chiral mode responses signifcantly to external perturbation,corresponding to the change in internal chirality.Therefore,single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far feld directional emission.Compared to traditional frequency splitting,the far feld pattern produced in deformed RTR provides a cost-efective and convenient path to detect single nanoparticle at a long distance,without using tunable laser and external coupler.Our structure indicates great potential in high sensitivity sensor and label-free detector.
基金supported by deutsche Forschungsgemeinschaft Grant Klinische Forschungsgruppe 213 to JG
文摘In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At the time,no one anticipated their high potential in basic research or for medical diagnostic andtreatment. Since then, SPIO have been evaluated notonly as spe- cific markers for MRI, but also for cell labeling and tracking (Li et al., 2013).
基金financial supports of the National Natural Science Foundation of China(No.21535006)the Fundamental Research Funds for the Central Universities(No.XDJK2015B029)
文摘Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.
文摘The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0^(-8)-7.0×10~6 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples.
文摘Arsenic(As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In past decades, surface-enhanced Raman scattering(SERS)has gained a reputation as one of the most sensitive spectroscopic methods for chemical and biomolecular sensing. The SERS technique has emerged as an extremely promising solution for in-situ detection of arsenic species in the field, particularly when coupled with portable/handheld Raman spectrometers. In this article, the recent advances in SERS analysis of arsenic species in water media are reviewed, and the potential of this technique for fast screening and field testing of arsenic-contaminated environmental water samples is discussed. The problems that remain in the field are also discussed and an outlook for the future is featured at the end of the article.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020201)the National Natural Science Foundation of China (Nos. 21337004, 21321004)
文摘Concerns over exposure to mercury have motivated the exploration of cost-effective,rapid,and reliable method for monitoring Hg^2+ in the environment.Recently,surface-enhanced Raman scattering(SERS) has become a promising alternative method for Hg^2+ analysis.SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures,resulting in substantially increased Raman signals.When Hg^2+ is in a close contact with metallic nanostructures,the SERS effect provides unique structural information together with ultrasensitive detection limits.This review introduces the principles and contemporary approaches of SERS-based Hg^2+detection.In addition,the perspective and challenges are briefly discussed.
基金funded by the National Natural Science Foundation of China(Nos.21103059,51136002 and 51076079)the China Key Technologies R&D Program(No.2012BAJ02B03)
文摘In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing DNA on Au nanoparticles and a self-assembled monolayer of cysteamine modified Au electrode. The assembly processes of cysteamine, Au nanoparticles and DNA were characterized by cyclic voltammetry (CV). The Au nanoparticles enhanced DNA immobilization resulting in an increased guanine signal. The interaction of the analyte with the immobilized DNA was measured through the variation of the electrochemical signal of guanine by square wave voltammetry (SWV). The biosensor was able to detect the known genotoxic compounds: 2-anthramine, acridine orange and 2- naphthylamine with detection limits of 2, 3 and 50 nmol/L, respectively. The biosensor was also used to test actual water samples to evaluate the contamination level. Additionally, the comparison of results from the classical genotoxiciw bioassay has confirmed the applicability of the method for real samoles.
基金supported by the National Natural Science Foundation of China for Young Scholars(No.21106064)the National Basic Research Program of China(No.2012CB725204)+1 种基金the National Science Foundation for Distinguished Young Scholars of China(No.21225626)the Natural Science Foundation of Jiangsu Province(Nos.BK2012822 and BK20131406)
文摘A simple, cheap and non-enzymatic colorimetric strategy for glucose detection has been designed based on the interactions between a phenylboronic acid (PBA) derivative, which is coupled with gold nanoparticles (AuNPs) as the colorimetric reporters, and glucose. The PBA-AuNPs hybrid system proposed here exhibits ordered photochemistry behaviors upon the addition of glucose at different pH values. There are two linear regions of glucose concentration for the glucose sensor at different pH values, i.e., between 0.1 mmol/L and 9.8 mmol/L at pH 6 with the detection limit of 64μmol/L and between 0 and 6.5 mmol/L with the detection limit of 48 μmol/L at pH 9, respectively. To test the practicality of the sensor system, we also applied this assay to detect a glucose sample in the artificial saliva.
基金Project supported by the National Natural Science Foundation of China(61376076,61674056,61675067,61575062,51275167,61377024)supported by the Scientific Research Fund of Hunan Provincial Education Department(16A072)
文摘Biocompatible NaREF_4(RE=0.4Y+0.4La+0.2(Yb,Er,Tm)(molar ratio)) upconversion nanoparticles(UCNPs) with strong visible fluorescence were synthesized by a solvothermal method and subsequent surface modification. Modulated upconversion luminescence emission spectra were obtained via changing the doping. In vitro and in vivo bioimagings were carried out with shrimps. The upconversion nanoprobes with an acidic/PEG hybrid ligand could quickly capture the basic Rhodamine-B(RB) in shrimp cells and formed a close UCNPs@RB system. The residual organic dye RB in shrimps could be detected on the basis of luminescent resonance energy transfer(LRET). It could be rapidly addressed based on LRET detection that RB residue existed in the shrimps after incubating in the aqueous solution of RB higher than 3 μg/m L for 12 h.
基金supported by the National Natural Science Foundation of China (21325523, 21527811)the Shandong Province Science Foundation for Youths (ZR2016HQ07)the Award for Team Leader Program of Taishan Scholars of Shandong Province, China
文摘Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.