期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Voltage-modulated polymer nanopore field-effect transistor for multi-sized nanoparticle detection
1
作者 Feng Zhou Lin Li Qiannan Xue 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期79-89,共11页
Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle ... Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics. 展开更多
关键词 Nanopipette Polymer nanopore Voltage modulation nanoparticle detection
下载PDF
Exceptional point enhanced nanoparticle detection in deformed Reuleaux‑triangle microcavity
2
作者 Jinhao Fei Xiaobei Zhang +5 位作者 Qi Zhang Yong Yang Zijie Wang Chuanlu Deng Yi Huang Tingyun Wang 《Frontiers of Optoelectronics》 EI CSCD 2024年第3期83-91,共9页
In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the defo... In this paper,we propose a deformed Reuleaux-triangle resonator(RTR)to form exceptional point(EP)which results in the detection sensitivity enhancement of nanoparticle.After introducing single nanoparticle to the deformed RTR at EP,frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR.In addition,EP induced a result that the far feld pattern of chiral mode responses signifcantly to external perturbation,corresponding to the change in internal chirality.Therefore,single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far feld directional emission.Compared to traditional frequency splitting,the far feld pattern produced in deformed RTR provides a cost-efective and convenient path to detect single nanoparticle at a long distance,without using tunable laser and external coupler.Our structure indicates great potential in high sensitivity sensor and label-free detector. 展开更多
关键词 Exceptional point Deformed microcavity nanoparticle detection Far-feld pattern
原文传递
Fluorescence detection of Europiumdoped very small superparamagnetic iron oxide nanoparticles in murine hippocampal slice cultures
3
作者 Martin Pohland Yuske Kobayashi Jana Glumm 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期637-638,共2页
In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At ... In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At the time,no one anticipated their high potential in basic research or for medical diagnostic andtreatment. Since then, SPIO have been evaluated notonly as spe- cific markers for MRI, but also for cell labeling and tracking (Li et al., 2013). 展开更多
关键词 EU Fluorescence detection of Europiumdoped very small superparamagnetic iron oxide nanoparticles in murine hippocampal slice cultures
下载PDF
Preparation of highly luminescent nitrogen and sulfur co-doped carbon nanoparticles for iron(Ⅲ)ions detection and cell imaging 被引量:1
4
作者 Cheng Chen Zhu-Lian Wu +3 位作者 Ting-Ting Wang Xiao-Yan Wan Shu-Jun Zhen Cheng-Zhi Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第7期1385-1390,共6页
Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which t... Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions. 展开更多
关键词 Carbon nanoparticles Hydrothermal method Nitrogen and sulfur co-doped Cell imaging Iron ion detection
原文传递
Homogeneous and nanomolar detection of hydrazine by indigocarmine as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode
5
作者 Mohammad Mazloum-Ardakani Hossein Rajabi Hadi Beitollahi 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第2期213-216,共4页
The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry w... The homogeneous electrocatalytic oxidation of hydrazine(HZ) has been studied by indigocarmine(IND) as a mediator at the surface of TiO_2 nanoparticles modified carbon paste electrode(TNMCPE).Cyclic voltammetry was used to study the electrochemical behavior of IND at different scan rates.The voltammetric response of the modified electrode was linear against the concentration of HZ in the ranges of 3.0×l0^(-8)-7.0×10~6 mol/L with differential pulse voltammetry method.The detection limit(3σ) was determined as 27.3 nmol/L.To evaluate the applicability of the proposed method to real samples,the modified CPE was applied to the determination of HZ in water samples. 展开更多
关键词 Hydrazine Indigocarmine TiO_2 nanoparticles Modified electrode Carbon paste electrode Nanomolar detection
原文传递
SERS detection of arsenic in water:A review 被引量:5
6
作者 Jumin Hao Mei-Juan Han +3 位作者 Songman Han Xiaoguang Meng Tsan-Liang Su Qingwu K.Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期152-162,共11页
Arsenic(As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In... Arsenic(As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In past decades, surface-enhanced Raman scattering(SERS)has gained a reputation as one of the most sensitive spectroscopic methods for chemical and biomolecular sensing. The SERS technique has emerged as an extremely promising solution for in-situ detection of arsenic species in the field, particularly when coupled with portable/handheld Raman spectrometers. In this article, the recent advances in SERS analysis of arsenic species in water media are reviewed, and the potential of this technique for fast screening and field testing of arsenic-contaminated environmental water samples is discussed. The problems that remain in the field are also discussed and an outlook for the future is featured at the end of the article. 展开更多
关键词 Arsenic SERS detection Speciation nanoparticles Nanofilms
原文传递
Recent progress in detection of mercury using surface enhanced Raman spectroscopy — A review 被引量:4
7
作者 Zhenli Sun Jingjing Du Chuanyong Jing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期134-143,共10页
Concerns over exposure to mercury have motivated the exploration of cost-effective,rapid,and reliable method for monitoring Hg^2+ in the environment.Recently,surface-enhanced Raman scattering(SERS) has become a pro... Concerns over exposure to mercury have motivated the exploration of cost-effective,rapid,and reliable method for monitoring Hg^2+ in the environment.Recently,surface-enhanced Raman scattering(SERS) has become a promising alternative method for Hg^2+ analysis.SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures,resulting in substantially increased Raman signals.When Hg^2+ is in a close contact with metallic nanostructures,the SERS effect provides unique structural information together with ultrasensitive detection limits.This review introduces the principles and contemporary approaches of SERS-based Hg^2+detection.In addition,the perspective and challenges are briefly discussed. 展开更多
关键词 Mercury SERS detection Substrate nanoparticles
原文传递
Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples 被引量:3
8
作者 Hong-Bo Xu Ran-Feng Ye +2 位作者 Shang-Yue Yang Rui Li Xu Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第1期29-34,共6页
In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing ... In the present study, a disposable electrochemical DNA nano-biosensor is proposed for the rapid detection of genotoxic compounds and bio-analysis of water pollution. The DNA nano-biosensor is prepared by immobilizing DNA on Au nanoparticles and a self-assembled monolayer of cysteamine modified Au electrode. The assembly processes of cysteamine, Au nanoparticles and DNA were characterized by cyclic voltammetry (CV). The Au nanoparticles enhanced DNA immobilization resulting in an increased guanine signal. The interaction of the analyte with the immobilized DNA was measured through the variation of the electrochemical signal of guanine by square wave voltammetry (SWV). The biosensor was able to detect the known genotoxic compounds: 2-anthramine, acridine orange and 2- naphthylamine with detection limits of 2, 3 and 50 nmol/L, respectively. The biosensor was also used to test actual water samples to evaluate the contamination level. Additionally, the comparison of results from the classical genotoxiciw bioassay has confirmed the applicability of the method for real samoles. 展开更多
关键词 Electrochemical DNA biosensor Au nanoparticles Genotoxic detection DNA damage
原文传递
Colorimetric detection of glucose using a boronic acid derivative receptor attached to unmodified AuNPs 被引量:3
9
作者 Yan-Ping Li Ling Jiang +3 位作者 Tao Zhang Ming Lin Dan-Bi Tian He Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第1期77-79,共3页
A simple, cheap and non-enzymatic colorimetric strategy for glucose detection has been designed based on the interactions between a phenylboronic acid (PBA) derivative, which is coupled with gold nanoparticles (Au... A simple, cheap and non-enzymatic colorimetric strategy for glucose detection has been designed based on the interactions between a phenylboronic acid (PBA) derivative, which is coupled with gold nanoparticles (AuNPs) as the colorimetric reporters, and glucose. The PBA-AuNPs hybrid system proposed here exhibits ordered photochemistry behaviors upon the addition of glucose at different pH values. There are two linear regions of glucose concentration for the glucose sensor at different pH values, i.e., between 0.1 mmol/L and 9.8 mmol/L at pH 6 with the detection limit of 64μmol/L and between 0 and 6.5 mmol/L with the detection limit of 48 μmol/L at pH 9, respectively. To test the practicality of the sensor system, we also applied this assay to detect a glucose sample in the artificial saliva. 展开更多
关键词 Colorimetric assay Glucose detection Gold nanoparticles Phenylbnronic acid derivative
原文传递
Upconversion luminescence turning of NaREF4(RE=0.4Y+0.4La+0.2(Yb, Er, Tm))nanoparticles and their applications for detecting Rhodamine B in shrimp 被引量:2
10
作者 胡仕刚 余意 +6 位作者 吴笑峰 胡盼 曹会祎 吴青杨 唐志军 郭源君 刘云新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第2期120-126,共7页
Biocompatible NaREF_4(RE=0.4Y+0.4La+0.2(Yb,Er,Tm)(molar ratio)) upconversion nanoparticles(UCNPs) with strong visible fluorescence were synthesized by a solvothermal method and subsequent surface modificatio... Biocompatible NaREF_4(RE=0.4Y+0.4La+0.2(Yb,Er,Tm)(molar ratio)) upconversion nanoparticles(UCNPs) with strong visible fluorescence were synthesized by a solvothermal method and subsequent surface modification. Modulated upconversion luminescence emission spectra were obtained via changing the doping. In vitro and in vivo bioimagings were carried out with shrimps. The upconversion nanoprobes with an acidic/PEG hybrid ligand could quickly capture the basic Rhodamine-B(RB) in shrimp cells and formed a close UCNPs@RB system. The residual organic dye RB in shrimps could be detected on the basis of luminescent resonance energy transfer(LRET). It could be rapidly addressed based on LRET detection that RB residue existed in the shrimps after incubating in the aqueous solution of RB higher than 3 μg/m L for 12 h. 展开更多
关键词 nanoparticles upconversion luminescence in vivo detecting organic dyes rare earths
原文传递
Advances in single-particle detection for DNA sensing 被引量:2
11
作者 Fei Ma Ming Ren Chun-yang Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第10期1285-1292,共8页
Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome p... Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well. 展开更多
关键词 single-particle detection DNA assay quantum dots metallic nanoparticles fluorescence resonance energy transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部