期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synthesis and optical properties research of gold nanoparticles with different morphologies 被引量:1
1
作者 徐宏妍 薛晨阳 +4 位作者 张强 王慧娟 袁艳玲 孙东 熊继军 《Journal of Measurement Science and Instrumentation》 CAS 2014年第1期96-102,共7页
This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with ... This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations. 展开更多
关键词 star-shaped gold nanoparticles spherical gold nanoparticles surface-enhanced Raman scattering (SERS) seed-mediated solution growth method
下载PDF
Spherical FeF3·0.33H2O/MWCNTs nanocomposite with mesoporous structure as cathode material of sodium ion battery 被引量:2
2
作者 Shuangying Wei Xianyou Wang +3 位作者 Min Liu Rui Zhang Gang Wang Hai Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期573-581,共9页
FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In thi... FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In this paper the mesoporous spherical FeF3·0.33H2O/MWCNTs nanocomposite was successfully synthesized via a one-step solvothermal approach. Galvanostatic measurement showed that the performances of sodium ion batteries(SIBs) using FeF3·0.33H2O/MWCNTs as cathode material were highly dependent on the morphology and size of the as-prepared materials. Benefitting from the special mesoporous structure features, FeF3·0.33H2O/MWCNTs nanocomposite exhibits much better electrochemical performances in terms of initial discharge capacity(350.4 mAh g-1) and cycle performance(123.5 mAh g-1 after 50 cycles at 0.1 C range from 1.0 V to 4.0 V) as well as rate capacity(123.8 mAh g-1 after 25 cycles back to 0.1 C). The excellent electrochemical performance enhancement can be attributed to the synergistic effect of the mesoporous structure and the MWCNTs conductive network, which can effectively increase the contact area between the active materials and the electrolyte, shorten the Na+ diffusion pathway,buffer the volume change during cycling/discharge process and improve the structure stability of the FeF3·0.33H2O/MWCNTs nanocomposite. 展开更多
关键词 Sodium ion batteries Cathode material Spherical nanoparticles Mesoporous structure Conductive network
下载PDF
Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport 被引量:4
3
作者 Ahmed Eissa Abdelmaoula Lulu Du +5 位作者 Lin Xu Yu Cheng Amir AMahdy Muhammad Tahir Ziang Liu Liqiang Mai 《Science China Materials》 SCIE EI CAS CSCD 2022年第6期1476-1484,共9页
The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BB... The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BBLN)solid polymer electrolyte was created by manipulating the shape of the incorporated nanoparticles.Our designed BBLN solid polymer electrolyte was created by incorporating spherical core-shell(UIO-66@67)fillers into polymer electrolyte,which is significantly different from traditional polymer-based composite electrolytes.UIO-66@67 spherical nanoparticles are highly favorable to eliminating polymer electrolyte stress and deformation during solidification,indicating a great potential for fabricating highly uniform BBLN solid polymer electrolytes with a substantial number of continuous convolutions.Furthermore,spherical nanoparticles can significantly reduce the crystalline structure of polymer electrolytes,improving polymer chain segmental movement and providing continuous pathways for rapid ion transfer.As a result,BBLN solid polymer electrolyte shows excellent ionic conductivity(9.2×10^(−4)S cm^(−1)),a high lithium transference number(0.74),and outstanding cycle stability against lithium electrodes over 6500 h at room temperature.The concept of biomimetic brain-like nanostructures in this work demonstrates a novel strategy to enhance ion transport in polymerbased electrolytes for solid-state batteries. 展开更多
关键词 brain structure spherical nanoparticles continuous interphase nanophase separation MOF-in-MOF
原文传递
Controllable preparation of particles with microfluidics 被引量:16
4
作者 Guangsheng Luo Le Du Yujun Wang Yangcheng Lu Jianhong Xu 《Particuology》 SCIE EI CAS CSCD 2011年第6期545-558,共14页
This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented a... This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented and compared, including single-phase and multiphase microflows. The main structures of microfluidic devices and the fundamental principles of microflows for particle preparation are summarized and identified. The controllability of particle size, size distribution, crystal structure, morphology, physical and chemical properties, is examined in terms of the special features of microfluidic reactors. An outlook on opinions and predictions concerning the future development of powder technology with microfluidics is specially provided. 展开更多
关键词 Microfluidics nanoparticles Micron spherical particles Micron non-spherical particles Preparation technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部