A novel electrochemical detection approach for platelet-derived growth factor(PDGF) via "sandwich"structure is reported in this paper. 3D-4MgCO3 Mg(OH)2 4H2O-Au NPs inorganic hybrid composite was utilized as imm...A novel electrochemical detection approach for platelet-derived growth factor(PDGF) via "sandwich"structure is reported in this paper. 3D-4MgCO3 Mg(OH)2 4H2O-Au NPs inorganic hybrid composite was utilized as immobilized substrate for sensitive PDGF detection and Pt-Au bimetallic nanoparticles were labelled on PDGF aptamer to indirectly detect PDGF for the first time. The proposed aptasensor exhibited a high catalytic efficiency towards reduction of H2O2, hence the sensitive detection of PDGF was achieved.Results showed that the aptasensor exhibited excellent linear response to PDGF, in the range of 0.1 pg/m L–10 ng/m L(4 fmol/L–400 pmol/L), with detection limit of 0.03 pg/m L(1.2 fmol/L).展开更多
基金supported by the National Natural Science Foundation of China(Nos.214650236,21165023)
文摘A novel electrochemical detection approach for platelet-derived growth factor(PDGF) via "sandwich"structure is reported in this paper. 3D-4MgCO3 Mg(OH)2 4H2O-Au NPs inorganic hybrid composite was utilized as immobilized substrate for sensitive PDGF detection and Pt-Au bimetallic nanoparticles were labelled on PDGF aptamer to indirectly detect PDGF for the first time. The proposed aptasensor exhibited a high catalytic efficiency towards reduction of H2O2, hence the sensitive detection of PDGF was achieved.Results showed that the aptasensor exhibited excellent linear response to PDGF, in the range of 0.1 pg/m L–10 ng/m L(4 fmol/L–400 pmol/L), with detection limit of 0.03 pg/m L(1.2 fmol/L).