The finite element method (FEM) was used to simulate sediment hydrodynamics at the Beidaihe International Yacht Club, and a two-dimensional model was established. The sediment movement and deposition were analyzed u...The finite element method (FEM) was used to simulate sediment hydrodynamics at the Beidaihe International Yacht Club, and a two-dimensional model was established. The sediment movement and deposition were analyzed under many tidal conditions in conjunction with the hydrological regime of the Daihe River. The peak value of the sediment deposition thickness appears in the main channel and around the estuary. The sediment deposition thickness is essentially constant and relatively small in the project area. The sediment deposition thickness in the main channel, in the yachting area, and around the hotel is greater than the other areas in the project. Regular excavation and dredging of the channel is the best measure for mitigating the sedimentation.展开更多
The numerical study of nanoparticle deposition in a fully developed laminar flow under different conditions is presented. The diameter of the particles ranged from 20 nm to 200 nm and the density was 1060 kg/m3. The c...The numerical study of nanoparticle deposition in a fully developed laminar flow under different conditions is presented. The diameter of the particles ranged from 20 nm to 200 nm and the density was 1060 kg/m3. The calculated results show that the small particles deposit on the wall surface more easily. More large particles deposit on the bottom wall than on the upper wall. Under the laminar conditions, the number of particles that deposit is independent of the flow velocity. The smaller the flow region is, the more the particles deposit on the wall. The longer the particles remain in the flow, the more the particles deposit on the wall, and greater the difference between the number of particles depositing on the bottom wall and the upper wall.展开更多
Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam m...Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam model in commercial software FLUENT, where the influence of inlet angle of water droplets of the stationary blades is also considered. Through the calculation, the relationship between the deposition and the diameter of water droplets is revealed. Then, the amount of droplets deposition in the suction and pressure surface is derived. The result is compared with experimental data and it proves that the numerical simulation result obtained in this paper is reasonable. Finally, a formula of the relationship between the diameter of water droplets and the inlet angle is fit, which could be used for approximate calculation in the engineering applications.展开更多
Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric ...Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results.展开更多
The spatial distdbution and deposition of PM2.5 in coastal areas of eastern China in 2010 were simulated using the CMAQ model. The results show that the simulated data were consistent with the observed data, and the m...The spatial distdbution and deposition of PM2.5 in coastal areas of eastern China in 2010 were simulated using the CMAQ model. The results show that the simulated data were consistent with the observed data, and the model could simulate the regional distribution of PM2.5 concentration. There were obvious seasonal variations in PM2.5 concentration in eastern China, and the spatial distribution of PM2.5 concentration which increased from the edge to the center of a city coincided well with that of the sources. In North China, the high-value center of PM2.5 concentration reached above 120 μg/m3. Wet deposition was the main way to remove PM2.5 , and wet deposition flux of PM2.5 was at least five times more than that of the dry deposition flux. Deposition flux of PM2.5 was the largest in summer, while it was the smallest in winter. The high-value center of deposition flux of PM2.5 in eastern China exceeded 30 mg/( m2 · d). Wet deposition of PM2s in each province or region accounted for more than 91% of total deposition of PM2.5. Total deposition of PM2.5 in all simulated regions amounted to 4.67 ×10^6 /a, and total deposition of PM2.5 in Beijing, Tianjin and Hebei was up to 1.65 ×10^6 t/a.展开更多
Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have...Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface.展开更多
Some flow-like landslides tend to lose materials while moving on a relatively dry sliding surface.This phenomenon is called bed deposition.In contrast to the bed entrainment phenomenon,bed deposition is relatively poo...Some flow-like landslides tend to lose materials while moving on a relatively dry sliding surface.This phenomenon is called bed deposition.In contrast to the bed entrainment phenomenon,bed deposition is relatively poorly understood.Therefore,an improved depth-averaged model is proposed to quantify this phenomenon.The deposition depth is calculated according to the momentum conservation of the deposited mass,and the rheological property of the sliding mass on the bottom is modified considering an abrupt increase in the depth of the sliding surface after deposition.Utilizing the proposed model,the Gaolou landslide,a typical flowlike landside occurring on October 6 th,2006 with an obvious bed deposition phenomenon in Shaanxi Province of China,is simulated to investigate the influence of bed deposition on its propagation process.The results indicate that the proposed model can effectively depict the bed deposition phenomenon in the Gaolou landslide.Bed deposition dissipates part of the kinetic energy of this landslide;thus,the simulated debris inundation area would likely be overestimated when this effect is neglected.On the other hand,the thin liquefied layer formed by the bed deposition process reduces the friction energy dissipation,contributing to the high mobility of this landslide.展开更多
Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characterist...Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.展开更多
Jing River is a tributary of the Wei River which is the largest tributary of the Yellow River. Sediments eroded from the upland of the Jing River basin are one of the major contributors of sediment entering the lower ...Jing River is a tributary of the Wei River which is the largest tributary of the Yellow River. Sediments eroded from the upland of the Jing River basin are one of the major contributors of sediment entering the lower Wei River(LWR). The Dongzhuang reservoir is designed to be constructed on the lower Jing River for flood control and water resources regulation, and this may change the sustainable management of the LWR as changed channel deposition by trapping sediments and releasing concentration-limited flow. Its effects on the LWR, especially the deposition distribution, should be analyzed. The steady quasi-two-dimensional dynamic model was adopted to estimate the deposition processes in the LWR. Then, the qualitative effects of the Dongzhuang reservoir on channel deposition were evaluated and compared with historical data, including capacity loss in other reservoirs and measured deposition in the LWR. Analyses indicated that the annual deposition in the LWR will decrease by approximately two-thirds due to the reservoir’s operation. After 15 years of operation, the effects of the Dongzhuang reservoir on the lower channel will decrease gradually. Moreover, its effects on lateral distribution in different sub-reaches are different. After the reservoir’s operation, the floodplain of the Xianyang–Lintong(XY-LT) sub-reach will change its sediment regime from deposition to erosion. For the Lintong–Huaxian(LT-HX) sub-reach, deposition in the main channel will be more serious during the first 30 years of operation. For the Huaxian–Tongguan (HX-TG) sub-reach, the reservoir will have almost no effects on the lateral distribution. All these analyses may benefit the sustainable management of the Wei River and the Yellow River.展开更多
A numerical study is carried out on particle deposition in ducts with either convex or concave wall cavity.Results show that,if compared with smooth duct,particle deposition velocitiesVd^+increase greatly in ducts wit...A numerical study is carried out on particle deposition in ducts with either convex or concave wall cavity.Results show that,if compared with smooth duct,particle deposition velocitiesVd^+increase greatly in ducts with wall cavities.More specifically,forτ+<1,Vd^+increase by about 2–4 orders of magnitude in the cases with the convex and concave wall cavities;forτ+>1,Vd^+grows relatively slower.Enhancement of particle deposition with wall cavities is caused by the following mechanisms,i.e.,interception by the wall cavities,expanded deposition area,and the enhanced flow turbulence.In general,addition of wall cavities is contributive for particle deposition,so it provides an efficient approach to remove particles,especially with small size,e.g.,PM2.5.Moreover,the convex wall cavity leads to a larger increment ofVd^+than the concave wall cavity.However,taking pressure loss into account,thoughVd^+is relatively lower,duct with the concave wall cavity is more efficient than that with the convex wall cavity.展开更多
The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteri...The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.展开更多
An integrated Eulerian model for fouling in turbulent flow was developed to simulate the particle fouling charac-teristics.The model comprises a deposition process and removal process.The deposition process considers ...An integrated Eulerian model for fouling in turbulent flow was developed to simulate the particle fouling charac-teristics.The model comprises a deposition process and removal process.The deposition process considers four various factors affecting the particle deposition which are Brownian and eddy diffusion,gravity,thermophoretic,and turbophoretic forces.This study compares the Lagrangian and Eulerian approaches under the same operat-ing conditions with an emphasis on their performance in predicting particle deposition.The deposition height calculated by using the Eulerian approach is in good agreement with the experimental data and the deposition morphology is similar to that observed in experiments.Furthermore,this paper explores the deposition charac-teristics and predicts the deposition morphology under different particle sizes.展开更多
Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,su...Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results.展开更多
The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-ga...The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary value problem. This paper puts forward a kind of characteristic finite difference schemes, and derives from them optimal order estimates in l^2 norm for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, for model numerical method and for software development.展开更多
The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic d...The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.展开更多
The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. Th...The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.展开更多
Debris flow is a rapid flow which could lead to severe flooding with catastrophic consequences such as damage to properties and loss of human lives.It is important to study the movement of debris flow.Since during a d...Debris flow is a rapid flow which could lead to severe flooding with catastrophic consequences such as damage to properties and loss of human lives.It is important to study the movement of debris flow.Since during a debris flow process,the erosion and deposition processes are important,the no entrainment assumption is not acceptable.In this study,first we considered the debris flow as equivalent fluid and adopted the depth-averaged govern equations to simulate the movements and evolution of river bed.Secondly,the set of partial differential equations was solved numerically by means of explicit staggered leap-frog scheme that is accurate in space and time.The grid of difference scheme was derived from GIS raster data.Then the simulation results can be displayed by GIS and easily used to form the hazard maps.Finally,the numerical model coupled with GIS is applied to simulate the debris flow occurred on Oct.20th,2010,in Amamioshima City,Japan.The simulation reproduces the movement,erosion and deposition.The results are shown to be consistent with the field investigation.展开更多
To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge me...To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge mechanism,the multi-physical field coupling software COMSOL was used to numerically simulate the fouling characteristics,explored the calculation method of ESDD,and demonstrated its rationality.Based on this method,the pollution characteristics of the composite insulator under the pollution fog environment were studied,and the influence of wind speed,droplet size,and voltage type on the pollution characteristics of the composite insulator was analyzed.The results showed that:with the increase in wind speed,the amount of accumulated pollution of insulator increases in the range of droplet size,and the relationship between wind speed and accumulated pollution is approximately linear;at the same wind speed,the amount of accumulated pollution increases with the increase of droplet size under the action of DC voltage;when there is no voltage,the amount of dirt on the upper surface of the insulator is more than that on the lower surface,while it is the opposite under DC voltage.展开更多
Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory...Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.展开更多
The YSZ coatings are prepared by the plasma spray-physical vapor deposition(PS-PVD)technology based on a specific experimental design.The structure,thickness and growth angle of YSZ coatings on the entire circumferent...The YSZ coatings are prepared by the plasma spray-physical vapor deposition(PS-PVD)technology based on a specific experimental design.The structure,thickness and growth angle of YSZ coatings on the entire circumferential surface of the cylindrical sample are studied.The results indicated that the structure,thickness and deflection growth angle of YSZ coatings are related to the orientation of deposition location.The numerical simulation of the multiphase mixed fluid near the substrate is carried out and the deposition regularity and mechanism of YSZ coatings prepared by PS-PVD is deduced.The growth rate is related to the local characteristics of the plasma flow field,and is directly proportional to the field pressure and inversely proportional to the field velocity.The growth angle of the coating is generally affected by the flow direction of the plasma jet.Especially,the normal component of velocity vector,V_(norm),mainly affects the speed at which the coating grows vertically upwards.The tangential component of velocity vector,V_(tan),determines the degree that the coating growth direction deviates from the vertical direction.When V_(tan)≠0,the coating forms a fine column with a certain deflection angle and finally develops into an oblique columnar structure.展开更多
文摘The finite element method (FEM) was used to simulate sediment hydrodynamics at the Beidaihe International Yacht Club, and a two-dimensional model was established. The sediment movement and deposition were analyzed under many tidal conditions in conjunction with the hydrological regime of the Daihe River. The peak value of the sediment deposition thickness appears in the main channel and around the estuary. The sediment deposition thickness is essentially constant and relatively small in the project area. The sediment deposition thickness in the main channel, in the yachting area, and around the hotel is greater than the other areas in the project. Regular excavation and dredging of the channel is the best measure for mitigating the sedimentation.
基金Project supported by Major Program of the National Natural Science Foundation of China (Grant No: 10632070)
文摘The numerical study of nanoparticle deposition in a fully developed laminar flow under different conditions is presented. The diameter of the particles ranged from 20 nm to 200 nm and the density was 1060 kg/m3. The calculated results show that the small particles deposit on the wall surface more easily. More large particles deposit on the bottom wall than on the upper wall. Under the laminar conditions, the number of particles that deposit is independent of the flow velocity. The smaller the flow region is, the more the particles deposit on the wall. The longer the particles remain in the flow, the more the particles deposit on the wall, and greater the difference between the number of particles depositing on the bottom wall and the upper wall.
文摘Based on the method of discrete phase, the law of droplets’ deposition in the last stage stationary blade of a supercritical 600 MW Steam Turbine is simulated in the first place of this paper by using the Wet-steam model in commercial software FLUENT, where the influence of inlet angle of water droplets of the stationary blades is also considered. Through the calculation, the relationship between the deposition and the diameter of water droplets is revealed. Then, the amount of droplets deposition in the suction and pressure surface is derived. The result is compared with experimental data and it proves that the numerical simulation result obtained in this paper is reasonable. Finally, a formula of the relationship between the diameter of water droplets and the inlet angle is fit, which could be used for approximate calculation in the engineering applications.
基金Project(2002AA420060) supported by the Hi-tech Research and Development Program of China
文摘Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results.
基金Supported by the National Natural Science Foundation of China(41373131)National Key Technology R&D Program(2014BA C23B03)
文摘The spatial distdbution and deposition of PM2.5 in coastal areas of eastern China in 2010 were simulated using the CMAQ model. The results show that the simulated data were consistent with the observed data, and the model could simulate the regional distribution of PM2.5 concentration. There were obvious seasonal variations in PM2.5 concentration in eastern China, and the spatial distribution of PM2.5 concentration which increased from the edge to the center of a city coincided well with that of the sources. In North China, the high-value center of PM2.5 concentration reached above 120 μg/m3. Wet deposition was the main way to remove PM2.5 , and wet deposition flux of PM2.5 was at least five times more than that of the dry deposition flux. Deposition flux of PM2.5 was the largest in summer, while it was the smallest in winter. The high-value center of deposition flux of PM2.5 in eastern China exceeded 30 mg/( m2 · d). Wet deposition of PM2s in each province or region accounted for more than 91% of total deposition of PM2.5. Total deposition of PM2.5 in all simulated regions amounted to 4.67 ×10^6 /a, and total deposition of PM2.5 in Beijing, Tianjin and Hebei was up to 1.65 ×10^6 t/a.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No. 2007AA06Z209)the National Natural Science Foundation of China (No. 50974104,50774062 and 50474039)
文摘Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface.
基金fund received from the National Key R&D Program of China(2017YFC1501302)the National Natural Science Foundation of China(No.41877242)the China Scholarship Council(CSC)–University of Bologna Joint Scholarship(File No.201806560011)which supported this study。
文摘Some flow-like landslides tend to lose materials while moving on a relatively dry sliding surface.This phenomenon is called bed deposition.In contrast to the bed entrainment phenomenon,bed deposition is relatively poorly understood.Therefore,an improved depth-averaged model is proposed to quantify this phenomenon.The deposition depth is calculated according to the momentum conservation of the deposited mass,and the rheological property of the sliding mass on the bottom is modified considering an abrupt increase in the depth of the sliding surface after deposition.Utilizing the proposed model,the Gaolou landslide,a typical flowlike landside occurring on October 6 th,2006 with an obvious bed deposition phenomenon in Shaanxi Province of China,is simulated to investigate the influence of bed deposition on its propagation process.The results indicate that the proposed model can effectively depict the bed deposition phenomenon in the Gaolou landslide.Bed deposition dissipates part of the kinetic energy of this landslide;thus,the simulated debris inundation area would likely be overestimated when this effect is neglected.On the other hand,the thin liquefied layer formed by the bed deposition process reduces the friction energy dissipation,contributing to the high mobility of this landslide.
基金Project(51276090) supported by the National Natural Science Foundation of ChinaProject(CXLX13_166) supported by Funding of Jiangsu Innovation Program for Graduate EducationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.
基金The research reported in this manuscript is funded by the National Natural Science Foundation of China(Grants No.51979264 and 51479179)。
文摘Jing River is a tributary of the Wei River which is the largest tributary of the Yellow River. Sediments eroded from the upland of the Jing River basin are one of the major contributors of sediment entering the lower Wei River(LWR). The Dongzhuang reservoir is designed to be constructed on the lower Jing River for flood control and water resources regulation, and this may change the sustainable management of the LWR as changed channel deposition by trapping sediments and releasing concentration-limited flow. Its effects on the LWR, especially the deposition distribution, should be analyzed. The steady quasi-two-dimensional dynamic model was adopted to estimate the deposition processes in the LWR. Then, the qualitative effects of the Dongzhuang reservoir on channel deposition were evaluated and compared with historical data, including capacity loss in other reservoirs and measured deposition in the LWR. Analyses indicated that the annual deposition in the LWR will decrease by approximately two-thirds due to the reservoir’s operation. After 15 years of operation, the effects of the Dongzhuang reservoir on the lower channel will decrease gradually. Moreover, its effects on lateral distribution in different sub-reaches are different. After the reservoir’s operation, the floodplain of the Xianyang–Lintong(XY-LT) sub-reach will change its sediment regime from deposition to erosion. For the Lintong–Huaxian(LT-HX) sub-reach, deposition in the main channel will be more serious during the first 30 years of operation. For the Huaxian–Tongguan (HX-TG) sub-reach, the reservoir will have almost no effects on the lateral distribution. All these analyses may benefit the sustainable management of the Wei River and the Yellow River.
基金Project (51506069) supported by the National Natural Science Foundation of ChinaProject (2016YFB0600605) supported by the National Key Research and Development Program of ChinaProjects (HUST2016YXMS286,HUST2015061) supported by the Fundamental Research Funds for the Central Universities,China
文摘A numerical study is carried out on particle deposition in ducts with either convex or concave wall cavity.Results show that,if compared with smooth duct,particle deposition velocitiesVd^+increase greatly in ducts with wall cavities.More specifically,forτ+<1,Vd^+increase by about 2–4 orders of magnitude in the cases with the convex and concave wall cavities;forτ+>1,Vd^+grows relatively slower.Enhancement of particle deposition with wall cavities is caused by the following mechanisms,i.e.,interception by the wall cavities,expanded deposition area,and the enhanced flow turbulence.In general,addition of wall cavities is contributive for particle deposition,so it provides an efficient approach to remove particles,especially with small size,e.g.,PM2.5.Moreover,the convex wall cavity leads to a larger increment ofVd^+than the concave wall cavity.However,taking pressure loss into account,thoughVd^+is relatively lower,duct with the concave wall cavity is more efficient than that with the convex wall cavity.
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of China
文摘The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.
基金the National Natural Sci-ence Foundation of China(No.51976028)for its financial support.
文摘An integrated Eulerian model for fouling in turbulent flow was developed to simulate the particle fouling charac-teristics.The model comprises a deposition process and removal process.The deposition process considers four various factors affecting the particle deposition which are Brownian and eddy diffusion,gravity,thermophoretic,and turbophoretic forces.This study compares the Lagrangian and Eulerian approaches under the same operat-ing conditions with an emphasis on their performance in predicting particle deposition.The deposition height calculated by using the Eulerian approach is in good agreement with the experimental data and the deposition morphology is similar to that observed in experiments.Furthermore,this paper explores the deposition charac-teristics and predicts the deposition morphology under different particle sizes.
基金funded by Shanxi Province Technology Innovation Guidance Special Project(2020QFY03-05)Shanxi Province Printing and Packaging Key Laboratory Project(16JS081).
文摘Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results.
基金Project supported by the National Scaling Program and the National Eighth Five-Year Key-Problems-Tackling Program.
文摘The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary value problem. This paper puts forward a kind of characteristic finite difference schemes, and derives from them optimal order estimates in l^2 norm for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, for model numerical method and for software development.
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41872249,41472302,41772348)supported by the National Natural Science Foundation of China
文摘The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.
基金China Ocean Mineral Resources Research and Development Association program under contract No. DY115-02-1-01the National Basic Research Program of China ("973" Program) under contract No.G2000078503
文摘The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.
基金This study was supported by the Global Environment Research Found of Japan(S-8)and Grants-in-Aid for Scientific Research(Scientific Research(B),22310113,G.Chen)from Japan Society for the Promotion of ScienceAnd the first author acknowledges the support of China Scholarship Council.These financial supports are gratefully acknowledged.
文摘Debris flow is a rapid flow which could lead to severe flooding with catastrophic consequences such as damage to properties and loss of human lives.It is important to study the movement of debris flow.Since during a debris flow process,the erosion and deposition processes are important,the no entrainment assumption is not acceptable.In this study,first we considered the debris flow as equivalent fluid and adopted the depth-averaged govern equations to simulate the movements and evolution of river bed.Secondly,the set of partial differential equations was solved numerically by means of explicit staggered leap-frog scheme that is accurate in space and time.The grid of difference scheme was derived from GIS raster data.Then the simulation results can be displayed by GIS and easily used to form the hazard maps.Finally,the numerical model coupled with GIS is applied to simulate the debris flow occurred on Oct.20th,2010,in Amamioshima City,Japan.The simulation reproduces the movement,erosion and deposition.The results are shown to be consistent with the field investigation.
文摘To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge mechanism,the multi-physical field coupling software COMSOL was used to numerically simulate the fouling characteristics,explored the calculation method of ESDD,and demonstrated its rationality.Based on this method,the pollution characteristics of the composite insulator under the pollution fog environment were studied,and the influence of wind speed,droplet size,and voltage type on the pollution characteristics of the composite insulator was analyzed.The results showed that:with the increase in wind speed,the amount of accumulated pollution of insulator increases in the range of droplet size,and the relationship between wind speed and accumulated pollution is approximately linear;at the same wind speed,the amount of accumulated pollution increases with the increase of droplet size under the action of DC voltage;when there is no voltage,the amount of dirt on the upper surface of the insulator is more than that on the lower surface,while it is the opposite under DC voltage.
文摘Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.
基金the financial support from National Natural Science Foundation of China(51771059)R&D Program in Key Fields of Guangdong Province of China(2019B010936001)+2 种基金National Science and Technology Major Project of China(2017-VI-0010-0081)Science and Technology Project of Guangdong Province of China(2017A070701027,2014B070705007)Sciences Project of Guangdong Academy of China(2019GDASYL-0104022)。
文摘The YSZ coatings are prepared by the plasma spray-physical vapor deposition(PS-PVD)technology based on a specific experimental design.The structure,thickness and growth angle of YSZ coatings on the entire circumferential surface of the cylindrical sample are studied.The results indicated that the structure,thickness and deflection growth angle of YSZ coatings are related to the orientation of deposition location.The numerical simulation of the multiphase mixed fluid near the substrate is carried out and the deposition regularity and mechanism of YSZ coatings prepared by PS-PVD is deduced.The growth rate is related to the local characteristics of the plasma flow field,and is directly proportional to the field pressure and inversely proportional to the field velocity.The growth angle of the coating is generally affected by the flow direction of the plasma jet.Especially,the normal component of velocity vector,V_(norm),mainly affects the speed at which the coating grows vertically upwards.The tangential component of velocity vector,V_(tan),determines the degree that the coating growth direction deviates from the vertical direction.When V_(tan)≠0,the coating forms a fine column with a certain deflection angle and finally develops into an oblique columnar structure.