Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to ...The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.展开更多
A negative differential mobility (NDM) of the two-dimensional carrier-gas against some proper external regulator allowing for gradual controlled modification of the nanointerfacial environment tends to occur as interw...A negative differential mobility (NDM) of the two-dimensional carrier-gas against some proper external regulator allowing for gradual controlled modification of the nanointerfacial environment tends to occur as interwoven with nanophotonic device functionality. In this work, several instances, in our two-decade principal research, of both experimental observation and conceptual prediction concerning nanophotonics NDM are reconsidered towards outlining a global potential for the appearance of the effect.展开更多
A two-part Notional Synthesis on Nanophotonics Fundamentals is being carried out: On the one hand, a rather novel depiction of the Fermionic Quantum Causality is being attempted. On the other hand, a Nanophotonic Resp...A two-part Notional Synthesis on Nanophotonics Fundamentals is being carried out: On the one hand, a rather novel depiction of the Fermionic Quantum Causality is being attempted. On the other hand, a Nanophotonic Response Encoder is being devised: Illuminated Electrons are the original Protagonists.展开更多
The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of ...The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of integrated circuits. However, as sub-10 nm high-volume manufacturing is becoming the mainstream, there is greater awareness that defects introduced by original equipment manufacturer components impact yield and manufacturing costs. The identification, positioning, and classification of these defects, including random particles and systematic defects, are becoming more and more challenging at the 10 nm node and beyond.Very recently, the combination of conventional optical defect inspection with emerging techniques such as nanophotonics, optical vortices, computational imaging, quantitative phase imaging, and deep learning is giving the field a new possibility. Hence, it is extremely necessary to make a thorough review for disclosing new perspectives and exciting trends, on the foundation of former great reviews in the field of defect inspection methods. In this article, we give a comprehensive review of the emerging topics in the past decade with a focus on three specific areas:(a) the defect detectability evaluation,(b) the diverse optical inspection systems,and(c) the post-processing algorithms. We hope, this work can be of importance to both new entrants in the field and people who are seeking to use it in interdisciplinary work.展开更多
Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is...Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is usually assumed that nonlinear frequency conversion requires large crystals that gradually accumulate a strong effect.However,the large size of nonlinear crystals is not compatible with the miniaturisation of modern photonic and optoelectronic systems.Therefore,shrinking the nonlinear structures down to the nanoscale,while keeping favourable conversion efficiencies,is of great importance for future photonics applications.In the last decade,researchers have studied the strategies for enhancing the nonlinear efficiencies at the nanoscale,e.g.by employing different nonlinear materials,resonant couplings and hybridization techniques.In this paper,we provide a compact review of the nanomaterials-based efforts,ranging from metal to dielectric and semiconductor nanostructures,including their relevant nanofabrication techniques.展开更多
Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min es...Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min esce nee has imme nse impact on both fun dame ntal scie ntific research and aforeme nti oned applicati ons.Among various nano phot tonic schemes and nanostructures to enhance the photoluminescence,we focus on a certain type of nanostructures,hyperbolic metamaterials(HMMs).HMMs are highly ani sotropic metamaterials,which produce intense localized electric fields.Therefore,HMMs n aturally boost photolu min esce nee from dye molecules,qua ntum dots,n itroge n-vaca ncy cen ters in diam on ds,perovskites and tra nsiti on metal dichalcoge nides.We provide an overview of various con figuratio ns of HMMs,i nclud ing metal-dielectric multilayers,trenches,metallic nanowires,and cavity structures fabricated with the use of noble metals,transparent conductive oxides,and refractory metals as plasmonic elements.We also discuss lasing action realized with HMMs.展开更多
Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and s...Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities.展开更多
In this paper, an optical radiative cooler with quasi-Cantor structure is theoretically proposed and analyzed. This simple and symmetrically designed optical structure operates upon continuous thermal sources in diurn...In this paper, an optical radiative cooler with quasi-Cantor structure is theoretically proposed and analyzed. This simple and symmetrically designed optical structure operates upon continuous thermal sources in diurnal subtropical conditions, and its efficiency is much higher than natural cooling, for instance, when operating upon a typical 323.15 K continuous thermal source with a wind speed at 3 m·s^-1, it can generate a net cooling power of 363.68 W·m^-2, which is 18.26% higher than that of non-radiative heat exchange (natural cooling) under the same conditions. Additionally, several aspects are considered in its design to ensure a low cost in application, which is of great economical and environmental significance.展开更多
Topological edge states(TESs),arising from topologically nontrivial phases,provide a powerful toolkit for the architecture design of photonic integrated circuits,since they are highly robust and strongly localized at ...Topological edge states(TESs),arising from topologically nontrivial phases,provide a powerful toolkit for the architecture design of photonic integrated circuits,since they are highly robust and strongly localized at the boundaries of topological insulators.It is highly desirable to be able to control TES transport in photonic implementations.Enhancing the coupling between the TESs in a finite-size optical lattice is capable of exchanging light energy between the boundaries of a topological lattice,hence facilitating the flexible control of TES transport.However,existing strategies have paid little attention to enhancing the coupling effects between the TESs through the finite-size effect.Here,we establish a bridge linking the interaction between the TESs in a finite-size optical lattice using the Landau–Zener model so as to provide an alternative way to modulate/control the transport of topological modes.We experimentally demonstrate an edge-to-edge topological transport with high efficiency at telecommunication wavelengths in silicon waveguide lattices.Our results may power up various potential applications for integrated topological photonics.展开更多
A technique capable of focusing and bending electromagnetic (EM) waves through plasmonic gratings with equally spaced alternately tapered slits has been introduced. Phase resonances are observed in the optical respo...A technique capable of focusing and bending electromagnetic (EM) waves through plasmonic gratings with equally spaced alternately tapered slits has been introduced. Phase resonances are observed in the optical response of transmission gratings, and the EM wave passes through the tuning slits in the form of surface plasmon polaritons (SPPs) and obtains the required phase retardation to focus at the focal plane. The bending effect is achieved by constructing an asymmetric phase front which results from the tapered slits and gradient refractive index (GRIN) distribution of the dielectric material. Rigorous electromagnetic analysis by using the two-dimensional (2D) finite difference time domain (FDTD) method is employed to verify our proposed designs. When the EM waves are incident at an angle on the optical axis, the beam splitting effect can also be achieved. These index-modulated slits are demonstrated to have unique advantages in beam manipulation compared with the width-modulated ones. In combination with previous studies, it is expected that our results could lead to the realization of ootimum designs for plasmonic nanolenses.展开更多
The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonst...The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures,the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W(with a periodicity 2 W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected ■ dispersion for both massive and massless fermions,where q ~π/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.展开更多
Traditional cooling systems have been posing a significant challenge to the global energy crisis and climate change due to the high energy consumption of the cooling process.In recent years,the emerging daytime radiat...Traditional cooling systems have been posing a significant challenge to the global energy crisis and climate change due to the high energy consumption of the cooling process.In recent years,the emerging daytime radiative cooling provides a promising solution to address the bottleneck of traditional cooling technology by passively dissipating heat radiation to outer space without any energy consumption through the atmospheric transparency window(8~13μm).Whereas its stringent optical criteria require sophisticated and high cost fabrication producers,which hinders the applicability of radiative cooling technology.Many efforts have been devoted to develop high-efficiency and low-cost daytime radiative cooling technologies for practical application,including the nanophotonics based artificial strategy and bioinspired strategy.In order to systematically summarize the development and latest advance of daytime radiative cooling to help developing the most promising approach,here in this paper we will review and compare the two typical strategies on exploring the prospect approach for applicable radiative cooling technology.We will firstly sketch the fundamental of radiative cooling and summarize the common methods for construction radiative cooling devices.Then we will put an emphasis on the summarization and comparison of the two strategies for designing the radiative cooling device,and outlook the prospect and extending application of the daytime radiative cooling technology.展开更多
Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. A...Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies;however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree of laser actuated thermal production was assessed. Through acellular evaluation, we identified a loss of photothermal efficiency in biologically relevant fluids and linked this response to excessive particle aggregation and an altered Au-NR spectral profile. Furthermore, to evaluate the potential impact of solution composition on the efficacy of nano-based biological applications, the degree of targeted cellular destruction was ascertained in vitro and was found to be susceptible to fluid-dependent modifications. In summary, this study identified a diminution of Au-NR nanophotonic response in artificial physiological fluids that translated to a loss of application efficiency, pinpointing a critical concern that must be considered to advance in vivo, nano-based bio-applications.展开更多
The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at me...The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at metal surfaces, have been introduced as an entity that is able to guide light on the surfaces of the metal and to concentrate light in subwavelength volumes. It has been found that periodic array of metallic nanospheres, could be able to enhance the light transmission, and guiding light at nanoscale. The coupling between two nanoparticles in these devices is very important. The Bloch-Jensen hydrodynamical method has been used for computing surface plasmons' frequencies of a single metallic nanosphere. It contains the entire pole spectrum automatically, so it is more exactly than the other computational methods. In this research, we have computed the surface plasmons' frequencies of two adjacent nanospheres by Bloch-Jensen hydrodynamical model for the first time. The results show that there are two modes for this system, which depend explicitly on interparticle spacing. In addition, we have shown that the excitation modes yield to a single mode of a nanoparticle as the interparticle spacing increases.展开更多
The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge.Nanolocalized catalytic combustion facilitates access to customizable infrared light sources.Here,we re...The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge.Nanolocalized catalytic combustion facilitates access to customizable infrared light sources.Here,we report on fabricating platinumalumina bilayer nano-cylinder arrays for methanol catalytic combustion,which enables them to act as an array of infrared point light sources,with wavelength tunable by controlling the flow rate of methanol/air mixture.We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission.We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission.This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.展开更多
Structural coloration generates colors by the interaction between incident light and micro-or nanoscale structures.It has received tremendous interest for decades,due to advantages including robustness against bleachi...Structural coloration generates colors by the interaction between incident light and micro-or nanoscale structures.It has received tremendous interest for decades,due to advantages including robustness against bleaching and environmentally friendly properties(compared with conventional pigments and dyes).As a versatile coloration strategy,the tuning of structural colors based on micro-and nanoscale photonic structures has been extensively explored and can enable a broad range of applications including displays,anti-counterfeiting,and coating.However,scholarly research on structural colors has had limited impact on commercial products because of their disadvantages in cost,scalability,and fabrication.In this review,we analyze the key challenges and opportunities in the development of structural colors.We first summarize the fundamental mechanisms and design strategies for structural colors while reviewing the recent progress in realizing dynamic structural coloration.The promising potential applications including optical information processing and displays are also discussed while elucidating the most prominent challenges that prevent them from translating into technologies on the market.Finally,we address the new opportunities that are underexplored by the structural coloration community but can be achieved through multidisciplinary research within the emerging research areas.展开更多
Chiral metamaterials(CMs)composed by artificial chiral resonators have attracted great attentions in the recent decades due to their strong chiroptical resonance and identifiable interaction with chiral materials,faci...Chiral metamaterials(CMs)composed by artificial chiral resonators have attracted great attentions in the recent decades due to their strong chiroptical resonance and identifiable interaction with chiral materials,facilitating practical applications in chiral biosensing,chiral emission,and display technology.However,the complex geometry of CMs improves the fabrication difficulty and hinders their scalable fabrication for practical applications,especially in the visible and ultraviolet wavelengths.One potential strategy is the colloidal lithography that enables parallel fabrication for scalable and various planar structures.Here,we demonstrate a stepwise colloidal lithography technique that uses sequential deposition from multiple CMs and expand their variety and complexity.The geometry and optical chirality of building blocks from single deposition are systematically investigated,and their combination enables a significant extension of the range of chiral patterns by multiple-step depositions.This approach resulted in a myriad of complex designs with different characteristic sizes,compositions,and shapes,which are particularly beneficial for the development of nanophotonic materials.In addition,we designed a flexible chiral device based on PDMS,which exhibits a good CD value and excellent stability even after multiple inward and outward bendings.The excellent compatibility to various substrates makes the planar CMs more flexible in practical applications in microfluidic biosensing.展开更多
Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerf...Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space.Besides the high Q factors enabled by the confined properties,many hidden topological characteristics were discovered in optical BICs.Especially in periodic structures with well-defined wave vectors,optical BICs were discovered to carry topological charges in momentum space,underlying many unique physical properties.Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light.BICs have enabled many novel discoveries in light-matter interactions and spin-orbit interactions of light,and BIC applications in lasing and sensing have also been well explored with many advantages.In this paper,we review recent developments of optical BICs in periodic structures,including the physical mechanisms of BICs,explored effects enabled by BICs,and applications of BICs.In the outlook part,we provide a perspective on future developments for BICs.展开更多
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars(Grant No.61725503)Zhejiang Provincial Natural Science Foundation(Grant No.Z18F050002)+1 种基金the National Natural Science Foundation of China(Grant Nos.61431166001 and 11861121002)the National Major Research and Development Program of China(Grant No.2016YFB0402502)
文摘The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.
文摘A negative differential mobility (NDM) of the two-dimensional carrier-gas against some proper external regulator allowing for gradual controlled modification of the nanointerfacial environment tends to occur as interwoven with nanophotonic device functionality. In this work, several instances, in our two-decade principal research, of both experimental observation and conceptual prediction concerning nanophotonics NDM are reconsidered towards outlining a global potential for the appearance of the effect.
文摘A two-part Notional Synthesis on Nanophotonics Fundamentals is being carried out: On the one hand, a rather novel depiction of the Fermionic Quantum Causality is being attempted. On the other hand, a Nanophotonic Response Encoder is being devised: Illuminated Electrons are the original Protagonists.
基金funded by the National Natural Science Foundation of China(Grant Nos.52175509 and 52130504)the National Key Research and Development Program of China(2017YFF0204705)+1 种基金the Key Research and Development Plan of Hubei Province(2021BAA013)the National Science and Technology Major Project(2017ZX02101006-004)。
文摘The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of integrated circuits. However, as sub-10 nm high-volume manufacturing is becoming the mainstream, there is greater awareness that defects introduced by original equipment manufacturer components impact yield and manufacturing costs. The identification, positioning, and classification of these defects, including random particles and systematic defects, are becoming more and more challenging at the 10 nm node and beyond.Very recently, the combination of conventional optical defect inspection with emerging techniques such as nanophotonics, optical vortices, computational imaging, quantitative phase imaging, and deep learning is giving the field a new possibility. Hence, it is extremely necessary to make a thorough review for disclosing new perspectives and exciting trends, on the foundation of former great reviews in the field of defect inspection methods. In this article, we give a comprehensive review of the emerging topics in the past decade with a focus on three specific areas:(a) the defect detectability evaluation,(b) the diverse optical inspection systems,and(c) the post-processing algorithms. We hope, this work can be of importance to both new entrants in the field and people who are seeking to use it in interdisciplinary work.
文摘Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is usually assumed that nonlinear frequency conversion requires large crystals that gradually accumulate a strong effect.However,the large size of nonlinear crystals is not compatible with the miniaturisation of modern photonic and optoelectronic systems.Therefore,shrinking the nonlinear structures down to the nanoscale,while keeping favourable conversion efficiencies,is of great importance for future photonics applications.In the last decade,researchers have studied the strategies for enhancing the nonlinear efficiencies at the nanoscale,e.g.by employing different nonlinear materials,resonant couplings and hybridization techniques.In this paper,we provide a compact review of the nanomaterials-based efforts,ranging from metal to dielectric and semiconductor nanostructures,including their relevant nanofabrication techniques.
基金L.Y.Beliaev,O.Takayama and A.V.Lavrinenko acknowledge the financial support from Independent Research Fund Denmark(DFF)(Research Project 2,8022-00387B)Denmark.PM acknowledges that the publication was prepared within the framework of Academic Fund Program at the HSE University in 2021(grant No 21-04-056).
文摘Photolu min esce nee in clud ing fluoresce nee plays a great role in a wide variety of applicati ons from biomedical sensing and imag ing to optoelectr on ics.Therefore,the enhan ceme nt and con trol of photolu min esce nee has imme nse impact on both fun dame ntal scie ntific research and aforeme nti oned applicati ons.Among various nano phot tonic schemes and nanostructures to enhance the photoluminescence,we focus on a certain type of nanostructures,hyperbolic metamaterials(HMMs).HMMs are highly ani sotropic metamaterials,which produce intense localized electric fields.Therefore,HMMs n aturally boost photolu min esce nee from dye molecules,qua ntum dots,n itroge n-vaca ncy cen ters in diam on ds,perovskites and tra nsiti on metal dichalcoge nides.We provide an overview of various con figuratio ns of HMMs,i nclud ing metal-dielectric multilayers,trenches,metallic nanowires,and cavity structures fabricated with the use of noble metals,transparent conductive oxides,and refractory metals as plasmonic elements.We also discuss lasing action realized with HMMs.
基金The authors thank National Natural Science Foundation of China (61522504, 61420106014, 61432007, 11604123) and Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081) for funding supports. M Gu acknowledges the supports from the Australian Research Council (ARC) through the Discovery Project (DP140100849) and Laureate Fellowship Scheme (FL100100099).
文摘Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities.
基金supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2016A030313851)the Provincial Undergraduate Training Program for Innovation and Entrepreneurship of Guangdong Province,China(Grant No.201610574149)
文摘In this paper, an optical radiative cooler with quasi-Cantor structure is theoretically proposed and analyzed. This simple and symmetrically designed optical structure operates upon continuous thermal sources in diurnal subtropical conditions, and its efficiency is much higher than natural cooling, for instance, when operating upon a typical 323.15 K continuous thermal source with a wind speed at 3 m·s^-1, it can generate a net cooling power of 363.68 W·m^-2, which is 18.26% higher than that of non-radiative heat exchange (natural cooling) under the same conditions. Additionally, several aspects are considered in its design to ensure a low cost in application, which is of great economical and environmental significance.
基金This work has been supported by National Natural Science Foundation of China(Grant Nos.12074137 and 61875042)the National Key Research and Development Program of China(Grant Nos.2021YFB2801903 and 2020YFB1313700)+4 种基金the startup funding of the Chinese University of Hong Kong,Shenzhen(Grant No.UDF01002563)the State Key Laboratory of Artificial Microstructure and Mesoscopic Physics(Peking University)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)and the Youth Innovation Promotion Association CAS(Grant No.Y201911)C.W.Q.acknowledges the support by Ministry of Education,Singapore(Grant No.A-8000708-00-00).
文摘Topological edge states(TESs),arising from topologically nontrivial phases,provide a powerful toolkit for the architecture design of photonic integrated circuits,since they are highly robust and strongly localized at the boundaries of topological insulators.It is highly desirable to be able to control TES transport in photonic implementations.Enhancing the coupling between the TESs in a finite-size optical lattice is capable of exchanging light energy between the boundaries of a topological lattice,hence facilitating the flexible control of TES transport.However,existing strategies have paid little attention to enhancing the coupling effects between the TESs through the finite-size effect.Here,we establish a bridge linking the interaction between the TESs in a finite-size optical lattice using the Landau–Zener model so as to provide an alternative way to modulate/control the transport of topological modes.We experimentally demonstrate an edge-to-edge topological transport with high efficiency at telecommunication wavelengths in silicon waveguide lattices.Our results may power up various potential applications for integrated topological photonics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203211 and 20907021)the Foundation for Outstanding Young Teachers of Nanjing University of Information Science&Technology,China(Grant No.20110423)
文摘A technique capable of focusing and bending electromagnetic (EM) waves through plasmonic gratings with equally spaced alternately tapered slits has been introduced. Phase resonances are observed in the optical response of transmission gratings, and the EM wave passes through the tuning slits in the form of surface plasmon polaritons (SPPs) and obtains the required phase retardation to focus at the focal plane. The bending effect is achieved by constructing an asymmetric phase front which results from the tapered slits and gradient refractive index (GRIN) distribution of the dielectric material. Rigorous electromagnetic analysis by using the two-dimensional (2D) finite difference time domain (FDTD) method is employed to verify our proposed designs. When the EM waves are incident at an angle on the optical axis, the beam splitting effect can also be achieved. These index-modulated slits are demonstrated to have unique advantages in beam manipulation compared with the width-modulated ones. In combination with previous studies, it is expected that our results could lead to the realization of ootimum designs for plasmonic nanolenses.
文摘The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures,the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W(with a periodicity 2 W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected ■ dispersion for both massive and massless fermions,where q ~π/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.
文摘Traditional cooling systems have been posing a significant challenge to the global energy crisis and climate change due to the high energy consumption of the cooling process.In recent years,the emerging daytime radiative cooling provides a promising solution to address the bottleneck of traditional cooling technology by passively dissipating heat radiation to outer space without any energy consumption through the atmospheric transparency window(8~13μm).Whereas its stringent optical criteria require sophisticated and high cost fabrication producers,which hinders the applicability of radiative cooling technology.Many efforts have been devoted to develop high-efficiency and low-cost daytime radiative cooling technologies for practical application,including the nanophotonics based artificial strategy and bioinspired strategy.In order to systematically summarize the development and latest advance of daytime radiative cooling to help developing the most promising approach,here in this paper we will review and compare the two typical strategies on exploring the prospect approach for applicable radiative cooling technology.We will firstly sketch the fundamental of radiative cooling and summarize the common methods for construction radiative cooling devices.Then we will put an emphasis on the summarization and comparison of the two strategies for designing the radiative cooling device,and outlook the prospect and extending application of the daytime radiative cooling technology.
文摘Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies;however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree of laser actuated thermal production was assessed. Through acellular evaluation, we identified a loss of photothermal efficiency in biologically relevant fluids and linked this response to excessive particle aggregation and an altered Au-NR spectral profile. Furthermore, to evaluate the potential impact of solution composition on the efficacy of nano-based biological applications, the degree of targeted cellular destruction was ascertained in vitro and was found to be susceptible to fluid-dependent modifications. In summary, this study identified a diminution of Au-NR nanophotonic response in artificial physiological fluids that translated to a loss of application efficiency, pinpointing a critical concern that must be considered to advance in vivo, nano-based bio-applications.
文摘The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at metal surfaces, have been introduced as an entity that is able to guide light on the surfaces of the metal and to concentrate light in subwavelength volumes. It has been found that periodic array of metallic nanospheres, could be able to enhance the light transmission, and guiding light at nanoscale. The coupling between two nanoparticles in these devices is very important. The Bloch-Jensen hydrodynamical method has been used for computing surface plasmons' frequencies of a single metallic nanosphere. It contains the entire pole spectrum automatically, so it is more exactly than the other computational methods. In this research, we have computed the surface plasmons' frequencies of two adjacent nanospheres by Bloch-Jensen hydrodynamical model for the first time. The results show that there are two modes for this system, which depend explicitly on interparticle spacing. In addition, we have shown that the excitation modes yield to a single mode of a nanoparticle as the interparticle spacing increases.
基金supported by the Shanghai Science and Technology Committee(Nos.10520710400,10PJ1403800,and 11DZ1111200)Sichuan Science and Technology Program(Nos.2021JDRC0022 and 2022YFSY0023).
文摘The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge.Nanolocalized catalytic combustion facilitates access to customizable infrared light sources.Here,we report on fabricating platinumalumina bilayer nano-cylinder arrays for methanol catalytic combustion,which enables them to act as an array of infrared point light sources,with wavelength tunable by controlling the flow rate of methanol/air mixture.We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission.We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission.This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.
基金supported by the National Key Research and Development Project of China (Nos.2022YFA1404700,2023YFB2806700,and 2021YFA1400802)the National Natural Science Foundation of China (Nos.6233000076,12334016,12025402,62125501,11934012,12261131500,92250302,and 62375232)the Shenzhen Fundamental Research Project (Nos.JCYJ20210324120402006,JCYJ20220818102218040,GXWD20220817145518001,JCYJ20200109112805990,and JCYJ20200109113003946).
文摘Structural coloration generates colors by the interaction between incident light and micro-or nanoscale structures.It has received tremendous interest for decades,due to advantages including robustness against bleaching and environmentally friendly properties(compared with conventional pigments and dyes).As a versatile coloration strategy,the tuning of structural colors based on micro-and nanoscale photonic structures has been extensively explored and can enable a broad range of applications including displays,anti-counterfeiting,and coating.However,scholarly research on structural colors has had limited impact on commercial products because of their disadvantages in cost,scalability,and fabrication.In this review,we analyze the key challenges and opportunities in the development of structural colors.We first summarize the fundamental mechanisms and design strategies for structural colors while reviewing the recent progress in realizing dynamic structural coloration.The promising potential applications including optical information processing and displays are also discussed while elucidating the most prominent challenges that prevent them from translating into technologies on the market.Finally,we address the new opportunities that are underexplored by the structural coloration community but can be achieved through multidisciplinary research within the emerging research areas.
基金This study was financially supported by the International Science and Technology Innovation Cooperation of Sichuan Province(No.21GJHZ0230)the National Natural Science Foundation of China(No.11604227)+1 种基金the International Visiting Program for Excellent Young Scholars of SCU(No.20181504)the Tenure Track program of the University of Twente.
文摘Chiral metamaterials(CMs)composed by artificial chiral resonators have attracted great attentions in the recent decades due to their strong chiroptical resonance and identifiable interaction with chiral materials,facilitating practical applications in chiral biosensing,chiral emission,and display technology.However,the complex geometry of CMs improves the fabrication difficulty and hinders their scalable fabrication for practical applications,especially in the visible and ultraviolet wavelengths.One potential strategy is the colloidal lithography that enables parallel fabrication for scalable and various planar structures.Here,we demonstrate a stepwise colloidal lithography technique that uses sequential deposition from multiple CMs and expand their variety and complexity.The geometry and optical chirality of building blocks from single deposition are systematically investigated,and their combination enables a significant extension of the range of chiral patterns by multiple-step depositions.This approach resulted in a myriad of complex designs with different characteristic sizes,compositions,and shapes,which are particularly beneficial for the development of nanophotonic materials.In addition,we designed a flexible chiral device based on PDMS,which exhibits a good CD value and excellent stability even after multiple inward and outward bendings.The excellent compatibility to various substrates makes the planar CMs more flexible in practical applications in microfluidic biosensing.
基金supported by the National Natural Science Foundation of China(Nos.12234007,12221004,12321161645,62325501,62135001,12074049,and 12147102)the National Key R and D Program of China(Nos.2022YFA1404804,2021YFA1400603,and 2023YFA1406900)+4 种基金the Major Program of National Natural Science Foundation of China(Nos.T2394480 and T2394481)the Science and Technology Commission of Shanghai Municipality(Nos.22142200400,21DZ1101500,2019SHZDZX01,and 23DZ2260100)the Fundamental Research Funds for the Central Universities(No.2022CDJQY-007)supported by the China National Postdoctoral Program for Innovative Talents(No.BX20230079)the China Postdoctoral Science Foundation(No.2023M740721).
文摘Optical bound states in the continuum(BICs)have recently stimulated a research boom,accompanied by demonstrations of abundant exotic phenomena and applications.With ultrahigh quality(Q)factors,optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space.Besides the high Q factors enabled by the confined properties,many hidden topological characteristics were discovered in optical BICs.Especially in periodic structures with well-defined wave vectors,optical BICs were discovered to carry topological charges in momentum space,underlying many unique physical properties.Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light.BICs have enabled many novel discoveries in light-matter interactions and spin-orbit interactions of light,and BIC applications in lasing and sensing have also been well explored with many advantages.In this paper,we review recent developments of optical BICs in periodic structures,including the physical mechanisms of BICs,explored effects enabled by BICs,and applications of BICs.In the outlook part,we provide a perspective on future developments for BICs.