期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metal–organic framework derived hierarchical porous TiO_2 nanopills as a super stable anode for Na-ion batteries 被引量:1
1
作者 Huan Li Zhiguo Zhang +3 位作者 Xiao Huang Tongbin Lan Mingdeng Wei Tingli Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期667-672,共6页
Hierarchical porous TiO_2 nanopills were synthesized using a titanium metal-organic framework MIL-125(Ti) as precursor. The as-synthesized TiO_2 nanopills owned a large specific surface area of 102 m^2/g and unique po... Hierarchical porous TiO_2 nanopills were synthesized using a titanium metal-organic framework MIL-125(Ti) as precursor. The as-synthesized TiO_2 nanopills owned a large specific surface area of 102 m^2/g and unique porous structure. Furthermore, the obtained TiO_2 nanopills were applied as anode materials for Na-ion batteries for the first time. The as-synthesized TiO_2 nanopills achieved a high discharge capacity of 196.4 m Ah/g at a current density of 0.1 A/g. A discharge capacity of 115.9 m Ah/g was obtained at a high current density of 0.5 A/g and the capacity retention was remained as high as 90% even after 3000 cycles. The excellent electrochemical performance can be attributed to its unique hierarchical porous feature. 展开更多
关键词 Hierarchical porous structure TiO2 nanopills Metal–organic framework Na-ion batteries
下载PDF
Lamellar-stacked cobalt-based nanopiles integrated with nitrogen/sulfur co-doped graphene as a bifunctional electrocatalyst for ultralong-term zinc-air batteries
2
作者 Lingxue Meng Wenwei Liu +6 位作者 Yang Lu Zhenyi Liang Ting He Jinying Li Haoxiong Nan Shengxu Luo Jia Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期633-641,I0014,共10页
Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition ... Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries. 展开更多
关键词 Lamellar-stacking nanopile Co_(3)O_(4) Anionic regulation Oxygen evolution reaction Oxygen reduction reaction Zinc–air battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部