期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhancing zinc storage performance of Mn_(3)O_(4)cathode through Ag-doping and-crosslinking dual-modification strategy
1
作者 Xin-yuan WANG Tian-zhen JIAN +5 位作者 Ya-ting YANG Jian-ping MA Xian-hong LI Zi-long XUE Wen-qing MA Cai-xia XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3693-3706,共14页
Octahedral Mn_(3)O_(4)nanoparticles with an Ag-doping and nanoporous Ag(NPS)framework was simply fabricated through an alloying-etching engineering.The dual-modified Mn_(3)O_(4)(denoted as Ag−Mn_(3)O_(4)/NPS)consists ... Octahedral Mn_(3)O_(4)nanoparticles with an Ag-doping and nanoporous Ag(NPS)framework was simply fabricated through an alloying-etching engineering.The dual-modified Mn_(3)O_(4)(denoted as Ag−Mn_(3)O_(4)/NPS)consists of Ag-doped Mn_(3)O_(4)nanoparticles crosslinked with three dimensional nanoporous Ag framework.The incorporated Ag dopant is effective in improving the intrinsic ionic and electronic conductivities of Mn_(3)O_(4),while the NPS framework is introduced to improve the electron/mass transfer across the entire electrode.Profiting from the dual-modification strategy,the Ag−Mn_(3)O_(4)/NPS exhibits admirable rate capability and cycling stability.A high reversible capacity of 88.7 mA·h/g can still be retained for over 1000 cycles at a current density of 1 A/g.Moreover,a series of ex-situ experimental techniques indicate that for Ag−Mn_(3)O_(4)/NPS electrode during the zinc ion storage,Mn_(3)O_(4)is electrochemically oxidized into various MnOx(e.g.,Mn_(2)O_(3),MnO2)species in the initial charging,and the subsequent battery reaction is actually the intercalation/deintercalation of H+and Zn2+into MnOx. 展开更多
关键词 ag-doped Mn_(3)O_(4) zinc ion battery nanoporous ag DEALLOYING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部