The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temp...The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temperatures.The nanoporous thin films were prepared by sol-gel technique.It was found that the impedance of the sensor sintered at 600 oC changed more than four order of magnitude in the relative humidity(RH) range of 11%-95% at 25 oC.The response and recovery time of the sensor were about 13 and 17 s,respectively.The sensor showed high humidity sensitivity,rapid response and recovery,prominent stability,good repeatability and narrow hysteresis loop.These re-sults indicated that Ce-doped nanoporous ZnO thin films can be used in fabricating high-performance humidity sensors.展开更多
Nanoporous amorphous ZnO films with lamellar structure were electrodetposited on the hydrophilir substrate by utilizing cooperative surface aussembly of anionic sodium dodecyl sulfonate ( SDS ) at a very low concen...Nanoporous amorphous ZnO films with lamellar structure were electrodetposited on the hydrophilir substrate by utilizing cooperative surface aussembly of anionic sodium dodecyl sulfonate ( SDS ) at a very low concentration and inorganic species Zn ( NO3 )2 under the influence of an electrostatic potential. The deposited films were characterized by X-ray diffraction (XRD) in the range of lou, angle and wide-angle, X-ray photoelectron spectroscopy ( XPS), scanning electron microscopy (SEM), and UV-Vis light absorption spectroscopy.The formation mechanism of the films was elementarily discussed.展开更多
Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstra...Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstrated that the film was crack-free, and that granular nanoparticles were homogenously distributed on the film surface. The average grain size of the nanoparticles and RMS roughness of the scanned surface area was 10 nm and 13.6 nm, respectively, which is due to the high porosity of the film. Photoluminescence (PL) spectra of the nanoporous ZnO film at room temperature show a diffused band, which might be due to an increased amount of oxygen va- cancies on the lattice surface. The observed results of the nanoporous ZnO film indicates a promising application in the development of electrochemical biosensors due to the porosity of film enhancing the higher loading of biomacromolecules (enzyme and proteins).展开更多
文摘The humidity sensitive characteristics of the sensor fabricated from Ce-doped nanoporous ZnO by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes were investigated at different sintering temperatures.The nanoporous thin films were prepared by sol-gel technique.It was found that the impedance of the sensor sintered at 600 oC changed more than four order of magnitude in the relative humidity(RH) range of 11%-95% at 25 oC.The response and recovery time of the sensor were about 13 and 17 s,respectively.The sensor showed high humidity sensitivity,rapid response and recovery,prominent stability,good repeatability and narrow hysteresis loop.These re-sults indicated that Ce-doped nanoporous ZnO thin films can be used in fabricating high-performance humidity sensors.
基金Founded by National Science Foundation of Tianjin ( No.33802311)
文摘Nanoporous amorphous ZnO films with lamellar structure were electrodetposited on the hydrophilir substrate by utilizing cooperative surface aussembly of anionic sodium dodecyl sulfonate ( SDS ) at a very low concentration and inorganic species Zn ( NO3 )2 under the influence of an electrostatic potential. The deposited films were characterized by X-ray diffraction (XRD) in the range of lou, angle and wide-angle, X-ray photoelectron spectroscopy ( XPS), scanning electron microscopy (SEM), and UV-Vis light absorption spectroscopy.The formation mechanism of the films was elementarily discussed.
文摘Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstrated that the film was crack-free, and that granular nanoparticles were homogenously distributed on the film surface. The average grain size of the nanoparticles and RMS roughness of the scanned surface area was 10 nm and 13.6 nm, respectively, which is due to the high porosity of the film. Photoluminescence (PL) spectra of the nanoporous ZnO film at room temperature show a diffused band, which might be due to an increased amount of oxygen va- cancies on the lattice surface. The observed results of the nanoporous ZnO film indicates a promising application in the development of electrochemical biosensors due to the porosity of film enhancing the higher loading of biomacromolecules (enzyme and proteins).