期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Theoretical and experimental study of the thermal conductivity of nanoporous media 被引量:5
1
作者 JIANG PeiXue XIANG Heng XU RuiNa 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2140-2147,共8页
The nanoparticle thermal conductivity and nanoscale thermal contact resistance were investigated by molecular dynamics(MD) simulations to further understand nanoscale porous media thermal conductivity.Macroscale porou... The nanoparticle thermal conductivity and nanoscale thermal contact resistance were investigated by molecular dynamics(MD) simulations to further understand nanoscale porous media thermal conductivity.Macroscale porous media thermal conductivity models were then revised for nanoporous media.The effective thermal conductivities of two packed beds with nanoscale nickel particles and a packed bed with microscale nickel particles were then measured using the Hot Disk.The measured results show that the nano/microscale porous media thermal conductivities were much less than the thermal conductivities of the solid particles.Comparison of the measured and calculated results shows that the revised combined parallel-series model and the revised Hsu-Cheng model can accurately predict the effective thermal conductivities of micro-and nanoparticle packed beds. 展开更多
关键词 thermal conductivity NANOPARTICLE nanoporous media molecular dynamics(MD) simulation contact resistance
原文传递
纳米多孔介质中的流体流动
2
作者 Weiyao Zhu Bin Pan +4 位作者 Zhen Chen Wengang Bu Qipeng Ma Kai Liu Ming Yue 《Engineering》 SCIE EI CAS CSCD 2024年第1期138-151,共14页
Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and b... Fluid flow at nanoscale is closely related to many areas in nature and technology(e.g.,unconventional hydrocarbon recovery,carbon dioxide geo-storage,underground hydrocarbon storage,fuel cells,ocean desalination,and biomedicine).At nanoscale,interfacial forces dominate over bulk forces,and nonlinear effects are important,which significantly deviate from conventional theory.During the past decades,a series of experiments,theories,and simulations have been performed to investigate fluid flow at nanoscale,which has advanced our fundamental knowledge of this topic.However,a critical review is still lacking,which has seriously limited the basic understanding of this area.Therefore herein,we systematically review experimental,theoretical,and simulation works on single-and multi-phases fluid flow at nanoscale.We also clearly point out the current research gaps and future outlook.These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas. 展开更多
关键词 Transport in nanoporous media Multi-phase fluid dynamics Nonlinear flow mechanisms Nonlinear flow conservation equations Interfacial forces Molecular dynamics simulation
下载PDF
Numerical Modelling of Electroosmotic Driven Flow in Nanoporous Media by Lattice Boltzmann Method 被引量:2
3
作者 Bo Li Wenning Zhou +2 位作者 Yuying Yan Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2013年第1期90-99,共10页
The lattice Boltzmann method was employed to simulate electroosmotic driven flow and Debye layer screening in con- ducting electrolyte around a porous structure with average size of 40 nm. The charge screening around ... The lattice Boltzmann method was employed to simulate electroosmotic driven flow and Debye layer screening in con- ducting electrolyte around a porous structure with average size of 40 nm. The charge screening around the nanopores was investigated by solving the vector-superpositioned potential equilibrium distribution function and adding electro-kinetic force term to the evolution equation. In this intermediate case of moderate Debye length, the electrophoresis problem becomes complicated. The motion of the particles distorts the screening cloud, which becomes asymmetric, resulting in very complex interactions between the electrolyte, the screening cloud and the particle; but the Electroosmotic Flow (EOF) behaviour was still considered based on the Helmoholtz-Smoluchowski model with adaptation to fit nanoporous flow in the porous structure. In the present approach, the flow in the nanopores is directly modelled; the detailed flow information can be obtained by simplifying the repeated macrostructure. Due to the symmetry of the domain, the size of computational domain can be largely reduced by less repeated spherical nanoparticles. Each pore of the medium contains several lattice nodes on the simplified curved edges and potential gradients are produced by adjusting the zeta potential value. The velocity results for pressure-driven and EOF flows agree well with the analytical solutions and recent experimental results. In particular, the interface between solid particles and fluids, the influences of porosity, solid particle diameter, yield stress and electric parameters in EOF were investigated. The anti-adhesion effect of electroosmotic pumping effect was evaluated, and the pulsed DC was applied in order to enhance the performance of the electroosmotic pumping. The results demonstrate that the present lattice Boltzmann model is capable of modelling flow through nanoporous media at certain restrictions while some results deviate from the predictions based on the macroscopic theories. 展开更多
关键词 electroosmotic flow electroosmotic pumping nanoporous media lattice Boltzmann method numerical modelling anti-adhesion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部