The proposed work aims to develop a sensitive surface-enhanced Raman spectroscopy(SERS)nano-biosensor.The inverted nano pyramid array on silicon substrate fabricated using electron beam lithography(EBL)was utilised as...The proposed work aims to develop a sensitive surface-enhanced Raman spectroscopy(SERS)nano-biosensor.The inverted nano pyramid array on silicon substrate fabricated using electron beam lithography(EBL)was utilised as a master template and the mold was later replicated via nanoimprinting process to prepare gold-coated polymer nanopyramid three-dimensional(3D)SERS substrate.The fast and versatile replication process using nanoimprinting lithography(NIL)can produce polymer nanopyramids in a low-cost and reproducible fashion.Also,the proposed fabrication protocol can be easily upscale for large scale fabrication.The intense electric field confinement at nanotips and four edges of gold-coated polymer nanopyramid enhanced the Raman signal of probe molecules,i.e.,Rhodamine 6G with a limit of detection down to 3.277×10−9 M was achieved.This work also underlines the efficiency of gold-coated polymer nanopyramid arrays in the spectral detection of hemoglobin proteins at low concentrations.The Raman signal enhancement mechanism was further studied through the electromagnetic simulation using COMSOL Multiphysics.In addition,bending test experiments were performed to understand the effect of flexibility on SERS signal response.The fabricated gold-coated polymer nanopyramids arrays could pave the way for the development of low-cost SERS platforms for the detection of hazardous biological and chemical compounds at ultra-low concentrations in practical applications.展开更多
Extensive attention has been drawn to the development of carbon fiber composites for their application in brake disks due to the increasing demand for brake disks with high mechanical strength and better tribological ...Extensive attention has been drawn to the development of carbon fiber composites for their application in brake disks due to the increasing demand for brake disks with high mechanical strength and better tribological properties.Herein,we design SiC hexagonal nanopyramids modified carbon/carbon(SiCNPsC/C)composites,in which SiCNPs are radially grafted on the carbon fibers by the combined sol-gel and carbothermal reduction method,and pyrolytic carbon(Py C)matrix is deposited on nucleation sites including carbon fibers and SiCNPs by isothermal chemical vapor infiltration(ICVI).Benefiting from the special structure,SiCNPs-C/C composites exhibit superior mechanical and frictional performance.Compared with C/C composites,SiCNPs-C/C composites have 147%,90.3%,70.6%,and 117.9%improvement in the hardness,interlaminar shear strength,and out-of-plane and in-plane compressive strength,respectively,which is attributed to the optimized fiber/matrix(F/M)interfaces bonding and the enhanced cohesion strength of Py C matrix.In addition,the friction coefficient of SiCNPs-C/C composites increases by 25.5%,and the wear rate decreases by 38.0%.This work provides an optional design thought for the nanomaterials and enlightens the mechanical and frictional modification of composites in the field of the brakes.展开更多
Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical ...Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.展开更多
基金The authors would like to acknowledge the state-of-the-art nanofabrication and characterisation facilities by the Indian Nanoelectronics Users Program(INUP)of IIT Bombay.The authors also acknowledge the Science and Engineering Research Board(SERB-DST),India(EEQ/2017/000370),for providing financial support for this research.
文摘The proposed work aims to develop a sensitive surface-enhanced Raman spectroscopy(SERS)nano-biosensor.The inverted nano pyramid array on silicon substrate fabricated using electron beam lithography(EBL)was utilised as a master template and the mold was later replicated via nanoimprinting process to prepare gold-coated polymer nanopyramid three-dimensional(3D)SERS substrate.The fast and versatile replication process using nanoimprinting lithography(NIL)can produce polymer nanopyramids in a low-cost and reproducible fashion.Also,the proposed fabrication protocol can be easily upscale for large scale fabrication.The intense electric field confinement at nanotips and four edges of gold-coated polymer nanopyramid enhanced the Raman signal of probe molecules,i.e.,Rhodamine 6G with a limit of detection down to 3.277×10−9 M was achieved.This work also underlines the efficiency of gold-coated polymer nanopyramid arrays in the spectral detection of hemoglobin proteins at low concentrations.The Raman signal enhancement mechanism was further studied through the electromagnetic simulation using COMSOL Multiphysics.In addition,bending test experiments were performed to understand the effect of flexibility on SERS signal response.The fabricated gold-coated polymer nanopyramids arrays could pave the way for the development of low-cost SERS platforms for the detection of hazardous biological and chemical compounds at ultra-low concentrations in practical applications.
基金the National Natural Science Foundation of China(Nos.51872232,51972271,and 51872234)Natural Science Basic Research Plan in Shaanxi(No.2022JC-25)。
文摘Extensive attention has been drawn to the development of carbon fiber composites for their application in brake disks due to the increasing demand for brake disks with high mechanical strength and better tribological properties.Herein,we design SiC hexagonal nanopyramids modified carbon/carbon(SiCNPsC/C)composites,in which SiCNPs are radially grafted on the carbon fibers by the combined sol-gel and carbothermal reduction method,and pyrolytic carbon(Py C)matrix is deposited on nucleation sites including carbon fibers and SiCNPs by isothermal chemical vapor infiltration(ICVI).Benefiting from the special structure,SiCNPs-C/C composites exhibit superior mechanical and frictional performance.Compared with C/C composites,SiCNPs-C/C composites have 147%,90.3%,70.6%,and 117.9%improvement in the hardness,interlaminar shear strength,and out-of-plane and in-plane compressive strength,respectively,which is attributed to the optimized fiber/matrix(F/M)interfaces bonding and the enhanced cohesion strength of Py C matrix.In addition,the friction coefficient of SiCNPs-C/C composites increases by 25.5%,and the wear rate decreases by 38.0%.This work provides an optional design thought for the nanomaterials and enlightens the mechanical and frictional modification of composites in the field of the brakes.
文摘Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.