期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration 被引量:1
1
作者 Jaakko Mastomaki Stefano Roddaro +8 位作者 Mirko Rocci Valentina Zannier Daniele Ercolani Lucia Sorba Ilari J. Maasilta Nadia Ligato Antonio Fornieri Elia Strambini Francesco Giazotto 《Nano Research》 SCIE EI CAS CSCD 2017年第10期3468-3475,共8页
We demonstrate an original method based on controlled oxidation for creating high-quality tunnel junctions between superconducting A1 reservoirs and InAs semiconductor nanowires (NWs). We show clean tunnel character... We demonstrate an original method based on controlled oxidation for creating high-quality tunnel junctions between superconducting A1 reservoirs and InAs semiconductor nanowires (NWs). We show clean tunnel characteristics with a current suppression by 〉4 orders of magnitude for a junction bias well below the A1 gap of △0≈ 200 μeV. The experimental data agree well with the Bardeen- Cooper-Schrieffer theoretical expectations for a superconducting tunnel junction. The studied devices employ small-scale tunnel contacts functioning as thermometers as well as larger electrodes that provide proof-of-principle active cooling of the electron distribution in the NWs. A peak refrigeration of approximately δT = 10 mK is achieved at a bath temperature of Tbath≈ 250-350 mK for our prototype devices. This method introduces important perspectives for the investigation of the thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration. 展开更多
关键词 InAs nanowire superconducting tunnel junction thermometry nanorefrigeration
原文传递
Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
2
作者 Yuchen Yang Lin Ma +2 位作者 Jie Yu Zewen Zhao Pengfei You 《Journal of Renewable Materials》 SCIE EI 2023年第3期1153-1179,共27页
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe... The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results. 展开更多
关键词 Life cycle assessment Organic Rankine Cycle NANOREFRIGERANT total energy consumption energy payback time
下载PDF
ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment
3
作者 D. SENDIL KUMAR R. ELANSEZHIAN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第1期75-80,共6页
In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of t... In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanopar- ticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50nm and 150g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanore- frigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigera- tion system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator tempera- ture was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R 152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper. 展开更多
关键词 ZnO nanorefrigerant reduced GWP COP pressure ratio green energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部