期刊文献+
共找到495篇文章
< 1 2 25 >
每页显示 20 50 100
Polarization Raman spectra of graphene nanoribbons
1
作者 许望伟 孙诗杰 +6 位作者 杨慕紫 郝振亮 高蕾 卢建臣 朱嘉森 陈建 蔡金明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期568-573,共6页
The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons(GNRs),which bears great potential in electronic applications.Here,we synthesize armchair graphene nanoribbons(AG... The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons(GNRs),which bears great potential in electronic applications.Here,we synthesize armchair graphene nanoribbons(AGNRs)and chevron-type graphene nanoribbons(CGNRs)array on a vicinal Au(111112)surface using 10,10′-dibromo-9,9′-bianthracene(DBBA)and 6,12-dibromochrysene(DBCh)as precursors,respectively.This process creates spatially wellaligned GNRs,as characterized by scanning tunneling microscopy.AGNRs show strong Raman linear polarizability for application in optical modulation devices.Different from the distinct polarization of AGNRs,only weak polarization exists in CGNRs polarized Raman spectrum,which suggests that the presence of the zigzag boundary in the nanoribbon attenuates the polarization rate as an important factor affecting the polarization.We analyze the Raman activation mode of CGNRs using the peak polarization to expand the application of the polarization Raman spectroscopy in nanoarray analysis. 展开更多
关键词 graphene nanoribbons polarization Raman spectroscopy scanning tunneling microscopy
下载PDF
Electronic and Optical Properties of O-Terminated Armchair Graphene Nanoribbons
2
作者 鲁道邦 罗长更 +2 位作者 宋玉玲 潘群娜 濮春英 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期205-211,I0001,共8页
The structure, electromagnetic and optical properties of the O-terminated graphene nanorib- bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are m... The structure, electromagnetic and optical properties of the O-terminated graphene nanorib- bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are more stable than the H-terminated ribbons and show metal- lic character. Spin-polarized calculations reveal that the antiferromagnetic state are more stable than the ferromagnetic state. The energy band and density of states analyses show that the O-terminated armchair edge are antiferromagnetic semiconductors. Because of the terminated 0 atoms, the dielectric function has an evident red shift and the first peak is the strongest with its main contribution derived from the highest valence band. The peaks of the dielectric function, reflection, absorption, energy loss are related to the transition of electrons. Our results suggest that the O-terminated graphene nanoribbons have potential applications in nanoelectronics, opto-electric devices. 展开更多
关键词 FIRST-PRINCIPLES Electronic properties Optical properties O termination Graphene nanoribbons
下载PDF
Three-Terminal Transport of Nonsymmetric T-Shaped Graphene Nanoribbons
3
作者 徐宁 许宁 《Journal of Donghua University(English Edition)》 EI CAS 2013年第2期137-140,共4页
In order to explore the transport properties of nonsymmetric three-terminal T-shaped graphene nanoribbons (GNRs) devices,the nonequilibrium Green's function method and Landauer-Buttiker formula were adopted. It sh... In order to explore the transport properties of nonsymmetric three-terminal T-shaped graphene nanoribbons (GNRs) devices,the nonequilibrium Green's function method and Landauer-Buttiker formula were adopted. It shows that the transport properties of T-shaped GNRs are highly sensitive to the details of the leads. The T-shaped GNRs show metallic characteristics when electrons transmit from the metallic GNRs lead to the metallic GNRs lead, while the T-shaped GNRs show semiconducting characteristics when electrons transmit from the metallic GNRs lead to the semiconducting GNRs lead. The conductance between the random two leads can be adjusted by varying the size of the leads. 展开更多
关键词 graphene nanoribbons( GNRs Green's function method CONDUCTANCE
下载PDF
Negative Differential Resistance and Spin-Filtering Effects in Zigzag Graphene Nanoribbons with Nitrogen-Vacancy Defects
4
作者 徐婷 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期653-658,I0003,共7页
We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combin... We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices. 展开更多
关键词 Defective graphene nanoribbon Electronic structure Spin-polarized transport property Negative differential resistance Spin-filtering
下载PDF
Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection 被引量:2
5
作者 C-Yoon Kim William K. A. Sikkema +7 位作者 Jin Kim Jeong Ah Kim James Walter Raymond Dieter Hyung-Min Chung Andrea Mana James M. Tour Sergio Canavero 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1440-1446,共7页
A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is i... A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is in fact possible. Other fusogens might improve current results. In this study, we aimed to assess the effects of PEGylated graphene nanoribons (PEG-GNR, and called "TexasPEG" when prepared as lwt% dispersion in PEG600) versus placebo (saline) on locomotor function recovery and cellular level in a rat model of spinal cord transection at lumbar segment 1 (L1) level. In vivo and in vitro experiments (n -- 10 per experiment) were designed. In the in vivo experiment, all rats were submitted to full spinal cord transection at L1 level. Five weeks later, behavioral assessment was performed using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Immunohistochemical staining with neuron marker neurofilament 200 (NF200) antibody and astrocyt- ic scar marker glial fibrillary acidic protein (GFAP) was also performed in the injured spinal cord. In the in vitro experiment, the effects of TexasPEG application for 72 hours on the neurite outgrowth of SH-SYSY cells were observed under the inverted microscope. Results of both in vivo and in vitro experiments suggest that TexasPEG reduces the formation of glial scars, promotes the regeneration of neurites, and thereby contributes to the recovery of locomotor function of a rat model of spinal cord transfection. 展开更多
关键词 nerve regeneration spinal cord transfection spinal cord fusion GEMINI TexasPEG graphene nanoribbons
下载PDF
Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons 被引量:2
6
作者 赵尚骞 吕燕 +2 位作者 吕文刚 梁文杰 王恩哥 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期507-513,共7页
We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near t... We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level sepa- rate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interest- ing half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future. 展开更多
关键词 graphene nanoribbons charge doping SPIN-POLARIZATION spatial localization
下载PDF
Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 被引量:1
7
作者 Caiyun Wang Shuang Lu +1 位作者 Xiaodong Yu Haipeng Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期522-526,共5页
We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain lengt... We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications. 展开更多
关键词 graphene nanoribbons(GNRs) thermal CONDUCTIVITY PHONON spectrum surface FUNCTIONALIZATION molecular dynamics simulations
下载PDF
Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons 被引量:1
8
作者 Huakai Xu Gang Ouyang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期353-360,共8页
We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons(APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density fun... We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons(APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density functional calculations. It is found that the atomic vacancies are easier to form and detain at the edge region rather than a random distribution through analyzing formation energy and diffusion barrier. The highly local defect states are generated at the vicinity of the Fermi level, and emerge a deep-to-shallow transformation as the width increases after introducing vacancies in APNRs.Moreover, the electrical transport of APNRs with vacancies is enhanced compared to that of the perfect counterparts. Our results provide a theoretical guidance for the further research and applications of PNRs through defect engineering. 展开更多
关键词 density-functional theory defect engineering ARMCHAIR phosphorene nanoribbon NON-EQUILIBRIUM Green's function
下载PDF
Negative differential resistance behaviour in N-doped crossed graphene nanoribbons 被引量:1
9
作者 陈灵娜 马松山 +3 位作者 欧阳方平 伍小赞 肖金 徐慧 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期531-535,共5页
By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties o... By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested. 展开更多
关键词 transport properties negative differential resistance FIRST-PRINCIPLES crossed graphene nanoribbons
下载PDF
The complex band structure for armchair graphene nanoribbons 被引量:1
10
作者 张留军 夏同生 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期548-554,共7页
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well wi... Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes. 展开更多
关键词 armchair graphene nanoribbons complex band structure edge bond relaxation third nearest neighbour interaction
下载PDF
Strain effect on transport properties of hexagonal boron—nitride nanoribbons 被引量:1
11
作者 陈风 陈元平 +1 位作者 张迷 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期489-494,共6页
The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon st... The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon. 展开更多
关键词 transport properties hexagonal boron-nitride nanoribbons Green's function
下载PDF
Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom 被引量:1
12
作者 杨玉娥 肖杨 +1 位作者 颜晓红 戴昌杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期428-433,共6页
We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsor... We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices, 展开更多
关键词 graphene nanoribbon transport properties iron adatom
下载PDF
Electronic Properties of Armchair Graphene Nanoribbons with Oxygenterminated Edges:A Density Functional Study 被引量:1
13
作者 GE Hong-Yu WANG Guo 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第5期641-649,共9页
Armchair graphene nanoribbons with different proportions of edge oxygen atoms are analyzed in this study using the crystal orbital method,which is based on density functional theory.Although buckled edges are present,... Armchair graphene nanoribbons with different proportions of edge oxygen atoms are analyzed in this study using the crystal orbital method,which is based on density functional theory.Although buckled edges are present,all the nanoribbons are energetically favorable.Unlike the adjacent edge oxygen atoms,the isolated edge oxygen atoms cause semiconductor-metal transitions by introducing edge states.For graphene nanoribbons with all oxygen atoms on the edges,band gap and carrier mobility vary with ribbon width.Furthermore,this behavior is different from that of hydrogen-passivated graphene nanoribbons because of different effective widths,which are pictorially presented with crystal orbitals.The carrier mobilities are as 18%~65% magnitude as those of hydrogen-passivated nanoribbons and are of the order of 10^3 cm^2·V^-1·s^-1. 展开更多
关键词 graphene nanoribbon semiconductor-metal transition crystal orbital carrier mobility density functional theory
下载PDF
Electric field effect in ultrathin zigzag graphene nanoribbons 被引量:1
14
作者 张文星 刘云霄 +2 位作者 田华 许军伟 冯琳 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期356-359,共4页
The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed wit... The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum(VBM) and conduction band minimum(CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA. 展开更多
关键词 electric field density functional theory zigzag nanoribbon
下载PDF
Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β_(12)-Borophene Nanoribbons 被引量:1
15
作者 Sahar Izadi Vishkayi Meysam Bagheri Tagani 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期124-136,共13页
This work presents an investigation of nanoribbons cut from β_(12)-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons(BNR) are s... This work presents an investigation of nanoribbons cut from β_(12)-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons(BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β_(12)-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β_(12) BNRs are potential candidates for next-generation spintronic devices. 展开更多
关键词 Borophene nanoribbons Electronic and magnetic properties Density functional theory
下载PDF
Theoretical Prediction of the Intrinsic Half-metallicity in One-dimensional Cr2NO2 Nanoribbons 被引量:1
16
作者 王果 廖奕 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第9期1544-1551,共8页
One-dimensional Cr2NO2 nanoribbons cut from the oxygen-passivated Cr2NO2 MXene were investigated by using density functional theory. The wide nanoribbons have ferromagnetic ground states and are intrinsic half-metals,... One-dimensional Cr2NO2 nanoribbons cut from the oxygen-passivated Cr2NO2 MXene were investigated by using density functional theory. The wide nanoribbons have ferromagnetic ground states and are intrinsic half-metals, independent of their chirality. The half-metallic band gaps of wide nanoribbons are larger than 1 eV, which are large enough for avoiding thermally activated spin flip. The magnetism does not rely on the edge states but originates from all the Cr atoms. Furthermore, the half-metallicity is still robust in an electronic device even if the bias is up to 1 V. Therefore, one-dimensional Cr2NO2 nanoribbons are good candidates for spintronics. 展开更多
关键词 Cr2NO2 nanoribbon intrinsic half-metallicity density functional theory
下载PDF
Electronic Transport through a Graphene Nanoribbon Composed of Nanoribbons of Different Widths 被引量:1
17
作者 Wen Liu Jie Cheng +1 位作者 Jianhua Zhao Desheng Liu 《Journal of Modern Physics》 2015年第2期95-100,共6页
Based on non-equilibrium Green’s function method combined with the density functional theory, we have studied the electronic properties of a graphene nanoribbon (GNR) which is composed of two GNRs with different widt... Based on non-equilibrium Green’s function method combined with the density functional theory, we have studied the electronic properties of a graphene nanoribbon (GNR) which is composed of two GNRs with different widths. The results show that the electron transmission is greatly modulated by the applied bias. The current of the system displays negative differential resistance effect, which is attributed to the broadening of the transmission gap with the increase of the bias around the Fermi level. 展开更多
关键词 GRAPHENE nanoribbon Electronic Transport NEGATIVE DIFFERENTIAL Resistance
下载PDF
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons 被引量:1
18
作者 Yang Liu Cai-Juan Xia +3 位作者 Bo-Qun Zhang Ting-Ting Zhang Yan Cui Zhen-Yang Hu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期62-65,共4页
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function... The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices. 展开更多
关键词 Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene nanoribbons
下载PDF
Band engineering of B_2H_2 nanoribbons
19
作者 Bao Lei Yu-Yang Zhang Shi-Xuan Du 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期305-309,共5页
Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Her... Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Here, we investigate the electronic structures of B_2H_2 nanoribbons. Based on first-principles calculations, we have found that all narrow armchair nanoribbons with and without mirror symmetry(ANR-s and ANR-as, respectively) are semiconducting. The energy gap has a relation with the width of the ribbon. When the ribbon is getting wider, the gap disappears. The zigzag ribbons without mirror symmetry(ZNR-as) have the same trend. But the zigzag ribbons with mirror symmetry(ZNR-s) are always metallic. We have also found that the metallic ANR-as and ZNR-s can be switched to semiconducting by applying a tensile strain along the nanoribbon. A gap of 1.10 eV is opened under 16% strain for the 11.0-■ ANR-as. Structural stability under such a large strain has also been confirmed. The flexible band tunability of B_2H_2 nanoribbon increases its possibility of potential applications in nanodevices. 展开更多
关键词 borophene HYDRIDE nanoribbons BAND ENGINEERING FIRST-PRINCIPLES CALCULATIONS strain
下载PDF
Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons
20
作者 Yu-Zhuo LV Peng ZHAO 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期48-51,共4页
Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromag... Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromagnetic ground states with a high Curie temperature that is far above room temperature and exhibit obvious spin-Seebeck effect. Moreover, thermal colossal magnetoresistance up to 1020% can be achieved by the external magnetic field modulation. The underlying mechanism is analyzed by spin-resolved transmission spectra, current spectra and band structures. 展开更多
关键词 SPIN Caloritronic TRANSPORT Tree-Saw GRAPHENE nanoribbons Density functional theory
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部