Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nan...Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.展开更多
TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydr...TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.展开更多
The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we de...The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.展开更多
Ordered ZnO nanorod arrays were epitaxially grown on GaN substrates by a hydrothermal method.The patterned template was made by transferring a self-assembled close-packed monolayer of polystyrene(PS)nanospheres onto G...Ordered ZnO nanorod arrays were epitaxially grown on GaN substrates by a hydrothermal method.The patterned template was made by transferring a self-assembled close-packed monolayer of polystyrene(PS)nanospheres onto GaN substrates.Then magnetron sputtering of SiO_(2)was used to mediate the size of PS nanospheres by plasma etching and form periodic seed sites for the following ZnO growth.It was observed that the size of ZnO nanorods could be varied by changing the temperature of hydrothermal growth,and the relationship between height and diameter of nanorods versus growth temperature was studied.This work provides a potential low-cost hydrothermal method for the preparation of ordered semiconductor nanorod arrays.展开更多
CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption...CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2.展开更多
ZnO nanorod arrays were prepared in an open system by using a simple aqueous solution method. Spindlelike, wimble-like, tower-like and hexagonal rod-like ZnO rods were obtained under different conditions. ZnO nanorod ...ZnO nanorod arrays were prepared in an open system by using a simple aqueous solution method. Spindlelike, wimble-like, tower-like and hexagonal rod-like ZnO rods were obtained under different conditions. ZnO nanorod arrays with different morphology and size were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurement (CAM). The size of ordered zinc oxide rods can be controlled by temperature of water bath, because this temperature can influences growing speeds in different crystal directions. Some additives, such as urea and thiourea, were introduced into reaction solution to improve quality of arrays. Surface character of ZnO nanorod arrays can be changed from hydrophilic to hydrophobic, which was proved to be dependence on size of air grooves on surface.展开更多
The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologie...The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based na^omaterials.展开更多
Highly ordered silicon nanorod(Si NR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality meta...Highly ordered silicon nanorod(Si NR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality metal mask is to construct a non-close-packed template that can be removed with negligible damage to the mask. Hydrophobicity of Si NR arrays of different geometries is also studied. It is shown that the nanorod structures are effectively quasi-hydrophobic with a contact angle as high as 142°, which would be useful in self-cleaning nanorod-based device applications.展开更多
The rutile TiO2 nanorod arrays with 240 nm in length, 30 nm in diameter, and 420 btm 2 in areal density were prepared by the hydrothermal method to replace the typical 200-300 nm thick mesoporous TiO2 thin films in pe...The rutile TiO2 nanorod arrays with 240 nm in length, 30 nm in diameter, and 420 btm 2 in areal density were prepared by the hydrothermal method to replace the typical 200-300 nm thick mesoporous TiO2 thin films in perovskite solar cells. The CH3NH3PbI3 xBrx capping layers with different thicknesses were obtained on the TiO2 nanorod arrays using different concentration PbI2.DMSO complex precursor solutions in DMF and the photovoltaic performances of the corresponding solar cells were compared. The perovskite solar cells based on 240 nm long TiO2 nanorod arrays and 420 nm thick CH3NH3PbI3 xBrx capping layers showed the best photoelectric conversion efficiency (PCE) of 15.56% and the average PCE of 14.93 ± 0.63% at the relative humidity of 50%-54% under the illumination of simulated AM 1.5 sunlight (100 mW.cm-2).展开更多
Ordered ZnO nanorod arrays were hydrothermally synthesized on a patterned GaN substrate formed by a nanosphere lithography method.Firstly,polystyrene(PS)nanospheres were used to self-assemble a close-packed monolayer ...Ordered ZnO nanorod arrays were hydrothermally synthesized on a patterned GaN substrate formed by a nanosphere lithography method.Firstly,polystyrene(PS)nanospheres were used to self-assemble a close-packed monolayer on the surface of water.Then the monolayer was transferred onto a GaN substrate.Subsequently,magnetron sputtering of SiO2 was used to reduce the size of PS nanospheres and cover the interstitial space between PS nanospheres by SiO_(2) at the same time.After removing the PS nanospheres,periodic seed sites were accomplished on the GaN substrate for ZnO growth.Finally,ordered ZnO nanorod arrays,perpendicular to the substrate,were grown on GaN substrates by a hydrothermal method.This work provides a potential low-cost hydrothermal method for the preparation of ordered semiconductor nanorod arrays.展开更多
We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer- by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts signif...We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer- by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts significantly to the longer wavelengths as the excitation power increases, especially when the longitudinal surface plasmon resonance of the Ag nanorod array cavity is adjusted to be close to the emission wavelength. The equivalent gain varies with the coating layer of CdSe/ZnS semiconductor quantum dots and the excitation power is also studied to explain this interesting spectrum-shifting effect. These findings could find applications in the dynamic information processing of active plasmonic and photonic nanodevices.展开更多
The development of highly efficient and durable oxygen evolution reaction(OER)catalysts for seawater electrolysis is of great importance for applications.Here,an amorphous FeMoO_(4) nanorod array on Ni foam is reporte...The development of highly efficient and durable oxygen evolution reaction(OER)catalysts for seawater electrolysis is of great importance for applications.Here,an amorphous FeMoO_(4) nanorod array on Ni foam is reported as a highly active OER electrocatalyst in alkaline seawater,requiring only overpotentials of 303 and 332 mV to achieve 100 and 300 mA·cm^(-2),respectively.Moreover,it shows strong long-term electrochemical durability for at least 50 h.展开更多
Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cell...Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample.展开更多
Lithium-sulfur(Li-S)batteries have been regarded as promising energy-storage systems,due to their high theoretical capacity and energy density.However,the carbonaceous sulfur hosts suffer from weak binding force betwe...Lithium-sulfur(Li-S)batteries have been regarded as promising energy-storage systems,due to their high theoretical capacity and energy density.However,the carbonaceous sulfur hosts suffer from weak binding force between the hosts and polysulfides,restricting the cyclic stability of sulfur electrode.Meantime,the presence of binder and conductive agent in the traditional electrode reduces its energy density.This study demonstrates that titanium nitride(TiN)nanorod array on carbon cloth(CC)is employed as a flexible host for highly stable Li-S batteries via solvothermal synthesis-nitridation strategy.On the one hand,the flexible integrated network composed of three-dimensional TiN nanorod array and CC significantly improves the conductivity,increases the electron transport and electrolyte penetration of cathode.On the other hand,the 3D structure of TiN/CC and the enhanced polarity of TiN effectively strengthen the physical and chemical double adsorption for polysulfides.As a result,the combination of TiN nanorod array and CC synergistic ally promotes sulfur utilization and electrochemical performances of S@TiN/CC cathode.A discharge capacity of1015.2 mAh·g^(-1)at 0.5C after 250 cycles and 604.1mAh·g^(-1)at 3C after 250 cycles is realized.Under a larger current density of 5C,the resulting S@TiN/CC cathode maintains a high discharge capacity of 666.6 mAh·g^(-1)and the Coulombic efficiency of about 100%.展开更多
Prussian blue(PB)is an anodic coloring candidate in the wide area of electrochromic(EC)applications.However,the co-influence of weak adhesion and low electrical conductivity leads to the poor stability and slow switch...Prussian blue(PB)is an anodic coloring candidate in the wide area of electrochromic(EC)applications.However,the co-influence of weak adhesion and low electrical conductivity leads to the poor stability and slow switching speed.To tackle this bottleneck,a novel TiO_(2)/Au/PB nanorod array is designed through hydrothermal and electrodeposition approaches on fluorine-doped tin oxide(FTO)glass.Such a designed ternary array structure could not only increase reactive site and conductivity,but also improve ion storage capacity and promote charge transfer,attributed to the synergistic effect of TiO_(2)/Au/PB core–shell heterostructure and the localized surface plasmon resonance(LSPR)effect of Au nanoparticles.Besides,density functional theory(DFT)calculation confirms the strong interaction between rutile TiO_(2)and FTO substrate,which contributes to the improvement of EC cycle stability.Benefiting from these effects,the TiO_(2)/Au/PB film shows a fast coloration/bleaching response of 1.08/2.01 s(2.17/4.48 s,PB film)and ultra-stable EC performance of 86.8%after 20,000 cycles(50%after 600 cycles,PB film).Furthermore,the high-intensity light source can be shot clearly by the designed and assembled EC iris device(ECID)with TiO_(2)/Au/PB film as an EC layer,while the photograph without an ECID is blurry,confirming the feasibility of the material in portable digital products.展开更多
Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion an...Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion and X-ray irradiation. Alkyl group adsorption-desorption mechanism and corresponding morphology depen- dence of wettability manipulation were revealed.展开更多
Highly ordered Ag2 S/ZnS/ZnO nanorod array film photoanodes were prepared on a Ti substrate for photocathodic cathodic protection.The results indicated that the photoresponse range of the Ag2S/ZnS/ZnO composite film w...Highly ordered Ag2 S/ZnS/ZnO nanorod array film photoanodes were prepared on a Ti substrate for photocathodic cathodic protection.The results indicated that the photoresponse range of the Ag2S/ZnS/ZnO composite film was extended compared to those of the ZnO and ZnS/ZnO films,indicating its higher light absorption capacity.When the Ag2S/ZnS/ZnO composite film served as a photoanode,the film can provide the best effective photocathodic protection for 304 stainless steel in a 3.5 wt%NaCl solution under white light illumination compared to the ZnO and ZnS/ZnO films.Additionally,in comparison to pure ZnO film,the photocurrent for the ZnS/ZnO film remained the same without noticeable fluctuation after illumination for 1 h,indicating that the ZnS functionalization improved the stability by overcoming the photocorrosion effect of the ZnO photoanode under light irradiation.展开更多
The membrane electrode assembly(MEA)plays a crucial role in the functionality of proton exchange membrane fuel cells(PEMFCs).The channels present within the catalyst layer of MEAs exhibit a disordered configuration,wh...The membrane electrode assembly(MEA)plays a crucial role in the functionality of proton exchange membrane fuel cells(PEMFCs).The channels present within the catalyst layer of MEAs exhibit a disordered configuration,which consequently give rise to low efficiency in mass transportation.In order to enhance the mass transfer performance and the corrosion resistance of the catalyst layer,this paper developed a double-side ordered MEA based on TiN nanorod arrays.We synthesized TiN nanorod arrays on the ITO surface by a seed-assisted hydrothermal reaction and nitriding treatment,and coated the catalyst uniformly on the TiN support by ultrasonic spraying.Then the double-side ordered MEA was fabricated by transfer printing,and achieved a peak power of 678.30 mW cm^(-2) with a cathode platinum loading of 0.2 mg cm^(-2) at 80℃ and anode saturated humidity.After 200 hours of accelerated stress test(AST)at 90℃ and 30/30%relative humidity,the peak performance only dropped by 4.8%.These results provide substantial evidence for the effectiveness of our developed double-side ordered MEA which can mitigate catalyst polarization corrosion.Thus,this study reveals the immense potential of the TiN nanorod array-based double-side ordered MEA in advancing the development of efficient and stable MEAs.展开更多
Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-dop...Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-doped tin oxide(FTO)glass and employed as the photoanode for photoelectrocatalytic degradation of methylene blue simulated dye wastewater.The Ovsites on the a-Fe_(2)O_(3)-NA surface are the active sites for methylene blue(MB)adsorption.Electrons transfer from the adsorbed MB to Fe-O is detected.Compared with electrocatalytic and photocatalytic degradation processes,the photoelectrocatalytic(PEC)process exhibited the best degrading performance and the largest kinetic constant.Hydroxyl,superoxide free radicals,and photo-generated holes play a jointly leading role in the PEC degradation.A possible degrading pathway is suggested by liquid chromatography-mass spectroscopy analysis.This work demonstrates that photoelectrocatalysis by a-Fe_(2)O_(3)-NA has a remarkable superiority over photocatalysis and electrocatalysis in MB degradation.The in-depth investigation of photoelectrocatalytic degradation mechanism in this study is meaningful for organic wastewater treatment.展开更多
Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxi...Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxidation of an appropriate test molecule. Here, we have demonstrated the feasibility of adopting photoanodes consisting of zinc oxide nanorods arrays decorated with plasmonic gold nanoparticles (Au NPs@ZnO NRs) for the self-powered PEC bioanalysis of glutathione (GSH) in phosphate-buffered saline (PBS) at an applied bias potential of 0 V vs. Ag/AgCl. This heterostructure exhibited enhanced PEC properties because of the introduction of the Au/ZnO interface. Under visible light illumination, hot electrons from surface-plasmon resonance (SPR) at the Au NP surface were injected into the adjacent ZnO and subsequently driven to the photocathode. Under ultraviolet (UV) light illumination, the photogenerated electrons in ZnO tended to transfer to the fluorine-doped tin oxide due to the step-wise energy band structure and the upward energy band bending at the ZnO/ electrolyte interface. These results indicate that plasmonic metal/semiconductor heterostructure photoanodes have great potential for self-powered PEC bioanalysis applications and extended field of other photovoltaic beacons.展开更多
文摘Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2013XK07)
文摘TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.
基金supported by the National Natural Science Foundation of China (No.61575087, No.21505057, and No.61771227)the Natural Science Foundation ofJiangsu Province (No.BK20151164, No.BK20150227, and No.BK20170229)+2 种基金the Innovation Project of Jiangsu Province(No.KYLX16_1322)the Natural Science Foundation of the Jiangsu Higher Education Institutions (No.17KJB140007)Foundation of Xuzhou City (No.KC15MS030)
文摘The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.
基金National Natural Science Foundation of China(No.21703031)Shanghai Natural Science Foundation,China(No.20ZR1401700)。
文摘Ordered ZnO nanorod arrays were epitaxially grown on GaN substrates by a hydrothermal method.The patterned template was made by transferring a self-assembled close-packed monolayer of polystyrene(PS)nanospheres onto GaN substrates.Then magnetron sputtering of SiO_(2)was used to mediate the size of PS nanospheres by plasma etching and form periodic seed sites for the following ZnO growth.It was observed that the size of ZnO nanorods could be varied by changing the temperature of hydrothermal growth,and the relationship between height and diameter of nanorods versus growth temperature was studied.This work provides a potential low-cost hydrothermal method for the preparation of ordered semiconductor nanorod arrays.
基金National Natural Science Foundation of China(No.11174071)the International Cooperation Project of Wuhan City and Hubei Province(Nos.201070934339 and 2010BFA010)
文摘CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2.
基金supported by Spaceflight Ba-sic Research Fund and Innovation Foundation of Beihang University for Ph.D. Graduates
文摘ZnO nanorod arrays were prepared in an open system by using a simple aqueous solution method. Spindlelike, wimble-like, tower-like and hexagonal rod-like ZnO rods were obtained under different conditions. ZnO nanorod arrays with different morphology and size were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurement (CAM). The size of ordered zinc oxide rods can be controlled by temperature of water bath, because this temperature can influences growing speeds in different crystal directions. Some additives, such as urea and thiourea, were introduced into reaction solution to improve quality of arrays. Surface character of ZnO nanorod arrays can be changed from hydrophilic to hydrophobic, which was proved to be dependence on size of air grooves on surface.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.20374050,20934004,21074096,50773072,and 90403022)the Outstanding Youth Fund of China (Grant No.20525416)+3 种基金the National Basic Research Program of China(Grant No.2005CB623800)Program for New Century Excellent Talents in University (Grant No.NCET-05-0538)the Natural Science Foundation of Zhejiang Province (Grant Nos.Y4090174 and Y6100033)the Science Technology Development Plan of Wenzhou City,China (Grant No.H20080041)
文摘The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based na^omaterials.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272246)the Scientific and Technological Research Foundation of Anhui Province,China(Grant No.12010202035)
文摘Highly ordered silicon nanorod(Si NR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality metal mask is to construct a non-close-packed template that can be removed with negligible damage to the mask. Hydrophobicity of Si NR arrays of different geometries is also studied. It is shown that the nanorod structures are effectively quasi-hydrophobic with a contact angle as high as 142°, which would be useful in self-cleaning nanorod-based device applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51472071 and 51272061)Talent Project of Hefei University of Technology,China(Grant Nos.75010-037004 and 75010-037003)
文摘The rutile TiO2 nanorod arrays with 240 nm in length, 30 nm in diameter, and 420 btm 2 in areal density were prepared by the hydrothermal method to replace the typical 200-300 nm thick mesoporous TiO2 thin films in perovskite solar cells. The CH3NH3PbI3 xBrx capping layers with different thicknesses were obtained on the TiO2 nanorod arrays using different concentration PbI2.DMSO complex precursor solutions in DMF and the photovoltaic performances of the corresponding solar cells were compared. The perovskite solar cells based on 240 nm long TiO2 nanorod arrays and 420 nm thick CH3NH3PbI3 xBrx capping layers showed the best photoelectric conversion efficiency (PCE) of 15.56% and the average PCE of 14.93 ± 0.63% at the relative humidity of 50%-54% under the illumination of simulated AM 1.5 sunlight (100 mW.cm-2).
基金National Natural Science Foundation of China(No.21703031)Shanghai Natural Science Foundation,China(No.20ZR1401700)。
文摘Ordered ZnO nanorod arrays were hydrothermally synthesized on a patterned GaN substrate formed by a nanosphere lithography method.Firstly,polystyrene(PS)nanospheres were used to self-assemble a close-packed monolayer on the surface of water.Then the monolayer was transferred onto a GaN substrate.Subsequently,magnetron sputtering of SiO2 was used to reduce the size of PS nanospheres and cover the interstitial space between PS nanospheres by SiO_(2) at the same time.After removing the PS nanospheres,periodic seed sites were accomplished on the GaN substrate for ZnO growth.Finally,ordered ZnO nanorod arrays,perpendicular to the substrate,were grown on GaN substrates by a hydrothermal method.This work provides a potential low-cost hydrothermal method for the preparation of ordered semiconductor nanorod arrays.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174229,11374236 and 11204221the National Basic Research Program of China under Grant No 2011CB922201
文摘We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer- by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts significantly to the longer wavelengths as the excitation power increases, especially when the longitudinal surface plasmon resonance of the Ag nanorod array cavity is adjusted to be close to the emission wavelength. The equivalent gain varies with the coating layer of CdSe/ZnS semiconductor quantum dots and the excitation power is also studied to explain this interesting spectrum-shifting effect. These findings could find applications in the dynamic information processing of active plasmonic and photonic nanodevices.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding support through large group Research Project(No.RGP2/257/44).
文摘The development of highly efficient and durable oxygen evolution reaction(OER)catalysts for seawater electrolysis is of great importance for applications.Here,an amorphous FeMoO_(4) nanorod array on Ni foam is reported as a highly active OER electrocatalyst in alkaline seawater,requiring only overpotentials of 303 and 332 mV to achieve 100 and 300 mA·cm^(-2),respectively.Moreover,it shows strong long-term electrochemical durability for at least 50 h.
基金The authors are thankful for funding from the National Natural Science Foundation of China (Nos. 51402063, 51432005, 61405040, 61505010, 51502018, 31270022, and 81471784), the "100 Talents Program" of the Chinese Academy of Sciences, Beijing City Committee of science and technology (No. Z151100003315010), Beijing Natural Science Foundation (Nos. 2164077 and 2164076), the Fundamental Research Funds of Shandong University (No. 2014QY003), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015023). The authors also acknowledge the support from the"thousands talents" program for pioneer researchers and his innovation team, and support from the President Funding of the Chinese Academy of Sciences.
文摘Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample.
基金financially supported by the National Natural Science Foundation of China (Nos.22179064,91963119,21805140,51772157,21905141,22203046 and62174087)China Postdoctoral Science Foundation (No.2018M642287)+2 种基金Jiangsu Province Postdoctoral Research Grant Program (No.2018K156C)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)the Synergetic Innovation Center for Organic Electronics and Information Displays。
文摘Lithium-sulfur(Li-S)batteries have been regarded as promising energy-storage systems,due to their high theoretical capacity and energy density.However,the carbonaceous sulfur hosts suffer from weak binding force between the hosts and polysulfides,restricting the cyclic stability of sulfur electrode.Meantime,the presence of binder and conductive agent in the traditional electrode reduces its energy density.This study demonstrates that titanium nitride(TiN)nanorod array on carbon cloth(CC)is employed as a flexible host for highly stable Li-S batteries via solvothermal synthesis-nitridation strategy.On the one hand,the flexible integrated network composed of three-dimensional TiN nanorod array and CC significantly improves the conductivity,increases the electron transport and electrolyte penetration of cathode.On the other hand,the 3D structure of TiN/CC and the enhanced polarity of TiN effectively strengthen the physical and chemical double adsorption for polysulfides.As a result,the combination of TiN nanorod array and CC synergistic ally promotes sulfur utilization and electrochemical performances of S@TiN/CC cathode.A discharge capacity of1015.2 mAh·g^(-1)at 0.5C after 250 cycles and 604.1mAh·g^(-1)at 3C after 250 cycles is realized.Under a larger current density of 5C,the resulting S@TiN/CC cathode maintains a high discharge capacity of 666.6 mAh·g^(-1)and the Coulombic efficiency of about 100%.
基金Funds for the Central Universities(Nos.HIT.OCEF.2021004 and FRFCU5710090220).
文摘Prussian blue(PB)is an anodic coloring candidate in the wide area of electrochromic(EC)applications.However,the co-influence of weak adhesion and low electrical conductivity leads to the poor stability and slow switching speed.To tackle this bottleneck,a novel TiO_(2)/Au/PB nanorod array is designed through hydrothermal and electrodeposition approaches on fluorine-doped tin oxide(FTO)glass.Such a designed ternary array structure could not only increase reactive site and conductivity,but also improve ion storage capacity and promote charge transfer,attributed to the synergistic effect of TiO_(2)/Au/PB core–shell heterostructure and the localized surface plasmon resonance(LSPR)effect of Au nanoparticles.Besides,density functional theory(DFT)calculation confirms the strong interaction between rutile TiO_(2)and FTO substrate,which contributes to the improvement of EC cycle stability.Benefiting from these effects,the TiO_(2)/Au/PB film shows a fast coloration/bleaching response of 1.08/2.01 s(2.17/4.48 s,PB film)and ultra-stable EC performance of 86.8%after 20,000 cycles(50%after 600 cycles,PB film).Furthermore,the high-intensity light source can be shot clearly by the designed and assembled EC iris device(ECID)with TiO_(2)/Au/PB film as an EC layer,while the photograph without an ECID is blurry,confirming the feasibility of the material in portable digital products.
文摘Wettability manipulation of glancing angle deposited Fe/Co/Ni nanorod arrays was realized by X-ray irradiation in ultra-high vacuum chamber. Reversible transition was also purchased by alternating ethanol immersion and X-ray irradiation. Alkyl group adsorption-desorption mechanism and corresponding morphology depen- dence of wettability manipulation were revealed.
基金This work was supported financially by the Funding from the Taishan Scholarship of Climbing Plan(No.tspd20161006)the National Natural Science Foundation of China(No.51772176)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ018).
文摘Highly ordered Ag2 S/ZnS/ZnO nanorod array film photoanodes were prepared on a Ti substrate for photocathodic cathodic protection.The results indicated that the photoresponse range of the Ag2S/ZnS/ZnO composite film was extended compared to those of the ZnO and ZnS/ZnO films,indicating its higher light absorption capacity.When the Ag2S/ZnS/ZnO composite film served as a photoanode,the film can provide the best effective photocathodic protection for 304 stainless steel in a 3.5 wt%NaCl solution under white light illumination compared to the ZnO and ZnS/ZnO films.Additionally,in comparison to pure ZnO film,the photocurrent for the ZnS/ZnO film remained the same without noticeable fluctuation after illumination for 1 h,indicating that the ZnS functionalization improved the stability by overcoming the photocorrosion effect of the ZnO photoanode under light irradiation.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(U1809220)Key Research and Development Program of Zhejiang Province(2022C01113)Key Research and Fundamental Research Funds for the Central Universities(2022FZZX01-06).
文摘The membrane electrode assembly(MEA)plays a crucial role in the functionality of proton exchange membrane fuel cells(PEMFCs).The channels present within the catalyst layer of MEAs exhibit a disordered configuration,which consequently give rise to low efficiency in mass transportation.In order to enhance the mass transfer performance and the corrosion resistance of the catalyst layer,this paper developed a double-side ordered MEA based on TiN nanorod arrays.We synthesized TiN nanorod arrays on the ITO surface by a seed-assisted hydrothermal reaction and nitriding treatment,and coated the catalyst uniformly on the TiN support by ultrasonic spraying.Then the double-side ordered MEA was fabricated by transfer printing,and achieved a peak power of 678.30 mW cm^(-2) with a cathode platinum loading of 0.2 mg cm^(-2) at 80℃ and anode saturated humidity.After 200 hours of accelerated stress test(AST)at 90℃ and 30/30%relative humidity,the peak performance only dropped by 4.8%.These results provide substantial evidence for the effectiveness of our developed double-side ordered MEA which can mitigate catalyst polarization corrosion.Thus,this study reveals the immense potential of the TiN nanorod array-based double-side ordered MEA in advancing the development of efficient and stable MEAs.
基金financially supported by the National Natural Science Foundation of China (22005097)the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University,Xiamen 361005,P.R.China (201815)。
文摘Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-doped tin oxide(FTO)glass and employed as the photoanode for photoelectrocatalytic degradation of methylene blue simulated dye wastewater.The Ovsites on the a-Fe_(2)O_(3)-NA surface are the active sites for methylene blue(MB)adsorption.Electrons transfer from the adsorbed MB to Fe-O is detected.Compared with electrocatalytic and photocatalytic degradation processes,the photoelectrocatalytic(PEC)process exhibited the best degrading performance and the largest kinetic constant.Hydroxyl,superoxide free radicals,and photo-generated holes play a jointly leading role in the PEC degradation.A possible degrading pathway is suggested by liquid chromatography-mass spectroscopy analysis.This work demonstrates that photoelectrocatalysis by a-Fe_(2)O_(3)-NA has a remarkable superiority over photocatalysis and electrocatalysis in MB degradation.The in-depth investigation of photoelectrocatalytic degradation mechanism in this study is meaningful for organic wastewater treatment.
基金This work was supported by the National Major Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), the National Natural Science Foundation of China (No. 51232001 and 51527802), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for the Central Universities.
文摘Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxidation of an appropriate test molecule. Here, we have demonstrated the feasibility of adopting photoanodes consisting of zinc oxide nanorods arrays decorated with plasmonic gold nanoparticles (Au NPs@ZnO NRs) for the self-powered PEC bioanalysis of glutathione (GSH) in phosphate-buffered saline (PBS) at an applied bias potential of 0 V vs. Ag/AgCl. This heterostructure exhibited enhanced PEC properties because of the introduction of the Au/ZnO interface. Under visible light illumination, hot electrons from surface-plasmon resonance (SPR) at the Au NP surface were injected into the adjacent ZnO and subsequently driven to the photocathode. Under ultraviolet (UV) light illumination, the photogenerated electrons in ZnO tended to transfer to the fluorine-doped tin oxide due to the step-wise energy band structure and the upward energy band bending at the ZnO/ electrolyte interface. These results indicate that plasmonic metal/semiconductor heterostructure photoanodes have great potential for self-powered PEC bioanalysis applications and extended field of other photovoltaic beacons.