期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process 被引量:2
1
作者 Jingjuan Qiao Weizhou Jiao Youzhi Liu 《Green Energy & Environment》 SCIE CSCD 2021年第6期910-919,共10页
As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process w... As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry. 展开更多
关键词 nanoscale zero valent iron Impinging stream-rotating packed bed Sequential NZVI-Na2S2O8process NITROBENZENE Degradation pathways
下载PDF
Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron:Synergetic effect,efficiency optimization and mechanism 被引量:9
2
作者 Xiaoguang Li Ying Zhao +5 位作者 Beidou Xi Xiaoguang Meng Bin Gong Rui Li Xing Peng Hongliang Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期8-17,共10页
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization... In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications. 展开更多
关键词 nanoscale zero-valent iron CLAY Material optimization Methyl Orange
原文传递
Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline 被引量:10
3
作者 Yuwei Wu Qinyan Yue +2 位作者 Yuan Gao Zhongfei Ren Baoyu Gao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第7期173-182,共10页
In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by ... In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by one-step liquid-phase reduction and applied for oxytetracycline(OTC) removal. The effects of contact time and initial p H on the removal efficiency were studied. The as-prepared nanoscale particles were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Finally, the degradation mechanisms of OTC utilizing the as-prepared nanoparticles were investigated by using X-ray photoelectron spectroscopy(XPS) and mass spectrometry(MS). Cu/n ZVI presented remarkable ability for OTC degradation and removed71.44% of OTC(100 mg/L) in 4 hr, while only 62.34% and 31.05% of OTC was degraded by Ni/nZVI and nZVI respectively. XPS and MS analysis suggested that OTC was broken down to form small molecules by ·OH radicals generated from the corrosion of Fe0. Cu/nZVI and Ni/n ZVI have been proved to have potential as materials for application in OTC removal because of their significant degradation ability toward OTC. 展开更多
关键词 Bimetallic nanoscale zero-valent iron particles OXYTETRACYCLINE Degradation mechanism Hydroxyl radicals
原文传递
Application of Iron Nanoparticles Synthesized by Green Tea for the Removal of Hexavalent Chromium in Column Tests 被引量:6
4
作者 C. Mystrioti A. Xenidis N. Papassiopi 《Journal of Geoscience and Environment Protection》 2014年第4期28-36,共9页
Nano zero valent iron particles (nZVI) are popular the last few years because of the numerous applications in remediation of a wide range of pollutants in contaminated soils and aquifers. The nZVI particles can be 10 ... Nano zero valent iron particles (nZVI) are popular the last few years because of the numerous applications in remediation of a wide range of pollutants in contaminated soils and aquifers. The nZVI particles can be 10 - 1000 times more reactive than granular or micro-scale ZVI particles due to the small particle size, large specific surface area and high reactivity. An alternative green synthesis procedure was used for the production of nano zero valent iron particles (nZVI) using green tea (GT) extract, which is characterized by its high antioxidant content. Polyphenols in green tea extract possess double role in the synthesis of nZVI, because they not only reduce ferric cations, but also protect nZVI from oxidation and agglomeration as capping agents. The objective of current study was to simulate ata laboratory scale the attachment of GT-nZVI particles on soil material and study the effectiveness of attached nanoparticles for removing hexavalent chromium (Cr(VI)) from contaminated groundwater flowing through the porous soil bed. Column tests were carried out with various flowrates in order to examine the effect of contact time between the attached on porous medium nZVI and the flow-through solution on Cr(VI) reduction. After the completion of column tests the soil material in each column was split in 5 vertical sections, which were further subjected to chemical analyses and leaching tests. According to the results of the study increasing the contact time favors the reduction and removal of Cr(VI) from the aqueous phase. The reductive precipitation of Cr can be described as a reaction that follows a pseudo-first order kinetic law, with rate constant equal to k = 0.0243 ± 0.0011 min-1. Leaching tests indicated that precipitated chromium is not soluble. In the examined soil material, the total amount of precipitated Cr was found to range between 280 and 890 mg/(kg soil), while soluble Cr was less than 1.4 mg/kg and most probably it was due to the presence of residual Cr(VI) solution in the porosity of soil. 展开更多
关键词 nanoscale zero valent iron NZVI Hexavalent CHROMIUM REDUCTIVE Capacity COLUMN Tests
下载PDF
Graphene-supported nanoscale zero-valent iron:Removal of phosphorus from aqueous solution and mechanistic study 被引量:12
5
作者 Fenglin Liu JingHe Yang +5 位作者 Jiane Zuo Ding Ma Lili Gan Bangmi Xie Pei Wang Bo Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第8期1751-1762,共12页
Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is ve... Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is very important for the health of the aqueous environment. Graphene was selected to support nanoscale zero-valent iron(nZVI)for phosphorus removal from synthetic rainwater runoff in this article. Compared with nZVI supported on other porous materials,graphene-supported nZVI(G-nZVI) could remove phosphorus more efficiently. The amount of nZVI in G-nZVI was an important factor in the removal of phosphorus by G-nZVI,and G-nZVI with 20 wt.% nZVI(20% G-nZVI)could remove phosphorus most efficiently. The nZVI was very stable and could disperse very well on graphene,as characterized by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). X-ray photoelectron spectroscopy(XPS),Fourier Transform infrared spectroscopy(FT-IR) and Raman spectroscopy were used to elucidate the reaction process,and the results indicated that Fe-O-P was formed after phosphorus was adsorbed by G-nZVI. The results obtained from X-ray diffraction(XRD) indicated that the reaction product between nZVI supported on graphene and phosphorus was Fe3(PO4)2·8H2O(Vivianite). It was confirmed that the specific reaction mechanism for the removal of phosphorus with nZVI or G-nZVI was mainly due to chemical reaction between nZVI and phosphorus. 展开更多
关键词 nanoscale zero valent iron Phosphorus Graphene Graphene-supported nZVI
原文传递
Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite 被引量:5
6
作者 Qiong Bin Bin Lin +5 位作者 Ke Zhu Yaqian Shen Yuanyuan Man Boyang Wang Changfei Lai Wenjin Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第2期90-102,共13页
Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminant... Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminants.Herein, we propose a new S-nZVI/graphene aerogel(S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene(TCE) from water.Three-dimensional porous graphene aerogel(GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs.The TCE removal rates of Fe S, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2 hr, respectively.Furthermore, TCE was completely removed within 50 min by S-nZVI/GA.The TCE removal rate increased with increasing p H and temperature, and TCE removal followed the pseudo-first-order kinetic model.The results demonstrate the great potential of S-nZVI/GA composite as a low-cost,easily separated and superior monolithic adsorbent for removal of organic pollutants. 展开更多
关键词 Organic pollutant REMOVAL TRICHLOROETHYLENE (TCE) Sulfide-modified nanoscale zero-valent iron GRAPHENE AEROGEL Nanocomposite
原文传递
Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron 被引量:5
7
作者 Yu Wang Dongmei Zhou +2 位作者 Yujun Wang Xiangdong Zhu Shengyang Jin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第8期1286-1292,共7页
Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanosca... Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated. The results showed that the dechlorination of 4-C1BP by NZVI increased with decreased solution pH. When the initial pH value was 4.0, 5.5, 6.8, and 9.0, the de.chlorination efficiencies of 4-CIBP after 48 hr were 53.8%, 47.8%, 35.7%, and 35.6%, respectively. The presence of humic acid inhibited the reduction of 4-CIBP in the first 4 hi', and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr. Divalent metal ions, Co2+, Cu2+, and Ni2+, were reduced and formed bimetals with NZVI, thereby enhanced the dechlorination of 4-CIBP. The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2~, Cuz~ and Niz~ were 66.1%, 66.0% and 64.6% in 48 hr, and then increased to 67.9%, 71.3% and 73.5%, after 96 hr respectively. The dechlorination kinetics of 4-C1BP by the NZVI in all cases followed pseudo-first order model. The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment. 展开更多
关键词 4-chlorobiphenyl nanoscale zero-valent iron humic acid metal ions DECHLORINATION
原文传递
Stabilization of nanoscale zero-valent iron in water with mesoporous carbon(n ZVI@MC) 被引量:4
8
作者 Junming Shi Jing Wang +2 位作者 Wei Wang Wei Teng Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第7期28-33,共6页
Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxid... Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxidation. Herein, we report the nZVI incorporated into mesoporous carbon(MC) to enhance stability in aqueous solution and mobility in porous media. Meanwhile, the reactivity of nZVI is preserved thanks to high temperature treatment and confinement of carbon framework. Small-sized(~16 nm) nZVI nanoparticles are uniformly dispersed in the whole carbon frameworks. Importantly, the nanoparticles are partially trapped across the carbon walls with a portion exposed to the mesopore channels. This unique structure not only is conductive to hold the nZVI tightly to avoid aggregation during mobility but also provides accessible active sites for reactivity. This new type of nanomaterial contains ~10 wt% of iron. The nZVI@MC possesses a high surface area(~ 500 m^2/g) and uniform mesopores(~ 4.2 nm) for efficient pollutant diffusion and reactions. Also, high porosity of nZVI@MC contributes to the stability and mobility of nZVI. Laboratory column experiments further demonstrate that nZVI@MC suspension(~4 g Fe/L) can pass through sand columns much more efficiently than bare nZVI while the high reactivity of nZVI@MC is confirmed from reactions with Ni(II). It exhibits remarkably better performance in nickel(20 mg/L) extraction than mesoporous carbon, with 88.0% and 33.0%uptake in 5 min, respectively. 展开更多
关键词 MESOPOROUS carbon nanoscale zero-valent iron MOBILITY Porous media HEAVY metal removal
原文传递
Nanoencapsulation of arsenate with nanoscale zero-valent iron(nZVI):A 3D perspective 被引量:8
9
作者 Airong Liu Wei Wang +2 位作者 Jing Liu Rongbing Fu Wei-xian Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2018年第24期1641-1648,共8页
The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the ... The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the core-shell interface. The chemical compositions and the fine structure of nZVI are characterized with a combination of spherical aberration corrected scanning transmission electron microscopy(Cs-STEM), X-ray energy-dispersive spectroscopy(XEDS), electron energy loss spectroscopy(EELS), and high-resolution X-ray photoelectron spectroscopy(HR-XPS). Atomically resolved EELS at the oxygen K-edge unfolds that the Fe species in nZVI are well stratified from Fe(Ⅲ) oxides in the outermost periphery to a mixed Fe(Ⅲ)/Fe(Ⅱ) interlayer, then Fe(Ⅱ) oxide and the pure Fe(0) phase. Reactions between As(Ⅴ)and nZVI suggest that a well-structured local redox gradient exists within the shell layer, which serves as a thermodynamically favorable conduit for electron transfer from the iron core to the surface-bound As(Ⅴ). HR-XPS with ion sputtering shows that arsenic species shift from As(Ⅴ), As(Ⅲ)/As(Ⅴ) to As(Ⅴ)/As(Ⅲ)/As(0) from the iron oxide shell–water interface to the Fe(0) core. Results reinforce previous work on the efficacy of nZVI for removing and remediating arsenic while the analytical TEM methods are also applicable to the study of environmental interfaces and surface chemistry. 展开更多
关键词 ARSENATE nanoscale zero-valent iron Spherical aberration corrected scanning transmission ELECTRON microscopy X-RAY energy-dispersive SPECTROSCOPY ELECTRON ENERGY-LOSS SPECTROSCOPY X-RAY photoelectron SPECTROSCOPY
原文传递
Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron:High resolution chemical mapping of the passivation layer 被引量:4
10
作者 Xiao-yue Huang Lan Ling Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期4-13,共10页
Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). N... Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(〈1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(〉1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 〈 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 〉 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation. 展开更多
关键词 nanoscale zero-valent iron (nZVI) Hexavalent chromium Solid phase reaction PASSIVATION Spherical-aberration-correctedscanning transmission electronmicroscopy (Cs-STEM)
原文传递
Interaction between Cu^(2+) and different types of surface-modified nanoscale zero-valent iron during their transport in porous media 被引量:3
11
作者 Haoran Dong Guangming Zeng +5 位作者 Chang Zhang Jie Liang Kito Ahmad Piao Xu Xiaoxiao He Mingyong Lai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期180-188,共9页
This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, coll... This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect. 展开更多
关键词 Copper ion Colloidal stability Co-transport nanoscale zero valent iron Surface modification
原文传递
Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff 被引量:2
12
作者 Bangmi XIE Jiane ZUO Lili GAN Fenglin LIU Kaijun WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第3期463-470,共8页
白手起家的阳离子交换树脂支持的 nanoscale zero-valent 铁(R-nZVI ) 被用来在雨水流量移开磷。在从草地的雨水流量的 80% 磷与 0.72 mg
关键词 阳离子交换树脂 雨水径流 零价铁 纳米级 除磷 比表面积分析 电感耦合等离子体 X射线光电子能谱
原文传递
Debromination of decabromodiphenyl ether by organo-montmorillonitesupported nanoscale zero-valent iron: Preparation, characterization and influence factors 被引量:13
13
作者 Zhihua Pang Mengyue Yan +2 位作者 Xiaoshan Jia Zhenxing Wang Jianyu Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期483-491,共9页
An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion... An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmoriUonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased. 展开更多
关键词 supported nanoscale zero-valent iron organo-montmorillonite decabromodiphenyl ether (BDE-209) degradation influence factors
原文传递
Chemical reduction of nitrate by nanoscale Fe/Ni bimetallic particles 被引量:1
14
作者 Haiyan KANG Zongming XIU Lili SUN Tielong LI Zhenying LIU Zhaohui JIN 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期111-112,共2页
关键词 二金属颗粒 反硝化作用 硝酸盐 地下水 水体污染
下载PDF
不同钙源纳米零价铁-羟基磷灰石复合材料的制备及其对Mn(Ⅱ)的吸附性能 被引量:1
15
作者 李蒨旻 张卫民 +1 位作者 陈家鸿 卢琪愿 《有色金属(冶炼部分)》 CAS 北大核心 2023年第10期126-137,共12页
通过液相还原法制备了两种不同钙源的纳米零价铁-羟基磷灰石复合材料(N-FH和C-FH)。通过静态批试验,研究了溶液pH、反应时间、初始锰浓度、反应温度等因素对N-FH和C-FH吸附水中Mn(Ⅱ)的影响,对复合材料吸附前后的微观形貌进行表征,并借... 通过液相还原法制备了两种不同钙源的纳米零价铁-羟基磷灰石复合材料(N-FH和C-FH)。通过静态批试验,研究了溶液pH、反应时间、初始锰浓度、反应温度等因素对N-FH和C-FH吸附水中Mn(Ⅱ)的影响,对复合材料吸附前后的微观形貌进行表征,并借助动力学模型分析其吸附机理。结果表明,在复合材料投加量0.125 g/L、初始锰浓度10 mg/L、溶液pH为5.0、反应时间720 min的条件下,N-FH和C-FH吸附水中Mn(Ⅱ)的最大吸附量分别为59.679 2、59.290 4 mg/g。N-FH和C-FH对Mn(Ⅱ)吸附过程更符合准二级动力学模型(R2>0.99)和Langmuir模型(R2>0.98),吸附机理皆为单层化学吸附。 展开更多
关键词 纳米零价铁(nZVI) 羟基磷灰石(HAP) 吸附机理 动力学
下载PDF
The colorful chemistry of nanoscale zero-valent iron(nZVI)
16
作者 Yilong Hua Jing Liu +2 位作者 Tianhang Gu Wei Wang Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期1-3,共3页
Nanoscale zero-valent iron (nZVI) possesses unique chemistry and capability for the separation and transformation of a growing number of environmental contaminants. A nZVI particle consists of two nanoscale componen... Nanoscale zero-valent iron (nZVI) possesses unique chemistry and capability for the separation and transformation of a growing number of environmental contaminants. A nZVI particle consists of two nanoscale components, an iron (oxyhydr)oxides shell and a metallic iron core. This classical "core-shell" structure offers nZVI with unique and multifaceted reactivity of sorption, complexation, reduction and precipita- tion due to its strong small particle size for engineering deployment, large surface area, abundant reactive sites and electron-donating capacity for enhanced chemical activity. For over two decades, research has been steadily expanding our understanding on the reaction mechanisms and engineering performance of nZVI for soil and groundwater remediation, and more recently for wastewater treatment. 展开更多
关键词 nanoscale zero-valent iron (nZVI) Environmental nanotechnology Dyes and pigments Wastewater treatment Spherical aberration-corrected scan-ning transmission electron micros-copy (Cs-STEM)
原文传递
碳改性纳米零价铁对水中六价铬的强化吸附还原研究
17
作者 陈海峰 张路萍 《安全与环境学报》 CAS CSCD 北大核心 2024年第1期353-360,共8页
纳米零价铁材料因其还原性强的特点而多用于水中Cr(Ⅵ)污染治理。以葡萄糖和氯化铁为原料,通过碳化煅烧还原,制备碳改性纳米零价铁复合材料(nZVI@GC)。材料形貌及结构性质的分析显示,nZVI@GC上纳米零价铁为体心立方的α-Fe^(0),且颗粒... 纳米零价铁材料因其还原性强的特点而多用于水中Cr(Ⅵ)污染治理。以葡萄糖和氯化铁为原料,通过碳化煅烧还原,制备碳改性纳米零价铁复合材料(nZVI@GC)。材料形貌及结构性质的分析显示,nZVI@GC上纳米零价铁为体心立方的α-Fe^(0),且颗粒分散均匀,平均粒径为32 nm。批处理试验显示,24 h内nZVI@GC对水体中Cr(Ⅵ)的吸附还原质量比为178.6 mg/g,是纳米零价铁(nZVI)的5.7倍,且吸附还原反应符合准二级动力学模型(R^(2)=0.9993)。其中,在pH值为2~3,Cr(Ⅵ)的初始质量浓度为50 mg/L,纳米零价铁的投加质量浓度为0.5 g/L的条件下,nZVI@GC可在30 min内完全吸附还原水中的Cr(Ⅵ)。在干燥空气中无保护存放nZVI@GC时,复合材料上的碳可以有效抑制氧气对纳米零价铁的侵蚀。与新制备材料相比,30 d后nZVI@GC对水中Cr(Ⅵ)的吸附还原率仅下降3.4%。nZVI@GC为材料高效、经济地吸附还原水中Cr(Ⅵ)提供了一种选择。 展开更多
关键词 环境工程学 六价铬 纳米零价铁 碳基材料 吸附还原
下载PDF
纳米零价铁活化过硫酸钠降解2,4-二氯苯酚 被引量:19
18
作者 金晓英 李任超 陈祖亮 《环境化学》 CAS CSCD 北大核心 2014年第5期812-818,共7页
采用纳米零价铁(nZVI)活化过硫酸钠产生强氧化性的硫酸根自由基(SO-4·)去除目标污染物2,4-二氯苯酚(2,4-DCP).通过比较nZVI与Fe2+催化S2O2-8对2,4-DCP的降解,结合SEM、EDS对nZVI反应前后表面结构变化分析发现,nZVI在过硫酸盐氧化降... 采用纳米零价铁(nZVI)活化过硫酸钠产生强氧化性的硫酸根自由基(SO-4·)去除目标污染物2,4-二氯苯酚(2,4-DCP).通过比较nZVI与Fe2+催化S2O2-8对2,4-DCP的降解,结合SEM、EDS对nZVI反应前后表面结构变化分析发现,nZVI在过硫酸盐氧化降解2,4-DCP中主要起到Fe2+离子源的作用,也具有还原和吸附作用.深入研究不同因素(初始pH值、nZVI投加量、S2O2-8初始浓度、2,4-DCP初始浓度)对2,4-DCP降解的影响,结果表明降低溶液初始pH值能提高nZVI/S2O2-8对2,4-DCP的降解率.在2,4-DCP初始浓度为30 mg·L-1,S2O2-8浓度为12.5 mmol·L-1,nZVI为2.0 g·L-1,pH值为3.0,温度为30℃下,2,4-DCP的去除率能达到92.1%,其降解过程符合准一级动力学,表观活化能为91.48 kJ·mol-1,是表面控制过程. 展开更多
关键词 过硫酸盐 纳米零价铁 2 4-二氯苯酚 氧化降解
下载PDF
磷酸化纳米铁去除水中Cd^(2+)、Zn^(2+)、Ni^(2+)的比较
19
作者 王欣瑶 盛杰 +1 位作者 邹云杰 凌岚 《环境化学》 CAS CSCD 北大核心 2024年第6期1898-1909,共12页
重金属污染已成为全球关注的环境问题,镉、镍和锌是工业生产中常见的重金属污染.纳米零价铁是重金属污染控制的重要环境功能材料,其改性优化工作也备受关注.本文采用液相还原法在制备过程中添加KH_(2)PO_(4)合成磷酸化纳米铁(phosphoryl... 重金属污染已成为全球关注的环境问题,镉、镍和锌是工业生产中常见的重金属污染.纳米零价铁是重金属污染控制的重要环境功能材料,其改性优化工作也备受关注.本文采用液相还原法在制备过程中添加KH_(2)PO_(4)合成磷酸化纳米铁(phosphorylated nanoscale zero-valent iron,P-nZVI),考察了磷酸化对纳米铁去除Cd^(2+)、Zn^(2+)、Ni^(2+)的效果的影响,评估了磷酸化对抗pH、干扰离子影响的效果,并结合XRD、SEM、S/TEM、XPS等表征手段比较了P-nZVI去除3种重金属的作用机制.研究表明,P-nZVI对Cd^(2+)、Zn^(2+)的去除效率均显著优于纳米零价铁(nanoscale zero-valent iron,nZVI),分别为79.6%、90.6%.吸附过程以P-nZVI表面磷酸基团的吸附为主,均可用准二级动力学描述.Ni^(2+)的去除包括吸附和还原作用,加剧了铁芯腐蚀,使其去除效率达到92.6%.因此,磷酸化修饰能通过累积零价铁表面负电荷以加速吸附过程;裂纹结构能降低金属离子跨越氧化铁层的阻碍,促进氧化还原,提高Fe0利用率. 展开更多
关键词 纳米铁 磷酸化修饰 重金属 吸附 氧化还原
下载PDF
纳米零价铁对γ-HCH的降解效果及机理研究 被引量:16
20
作者 常春 祝凌燕 朱淑贞 《中国环境科学》 EI CAS CSCD 北大核心 2010年第2期167-173,共7页
采用液相还原法制备纳米零价铁(nZVI),透射电镜表征显示,其粒径<20nm,在介质中处于团簇状态.利用所合成的nZVI对γ-HCH进行了还原脱氯研究,结果表明,nZVI具有很高的表面反应活性,当用量为0.5g/L时,反应90min,对2.5mg/L的γ-HCH去除率... 采用液相还原法制备纳米零价铁(nZVI),透射电镜表征显示,其粒径<20nm,在介质中处于团簇状态.利用所合成的nZVI对γ-HCH进行了还原脱氯研究,结果表明,nZVI具有很高的表面反应活性,当用量为0.5g/L时,反应90min,对2.5mg/L的γ-HCH去除率达90%以上.nZVI对γ-HCH的去除符合准一级反应动力学方程,其反应速率和去除率与pH值、nZVI添加量、γ-HCH初始浓度、共存离子等因素有关.反应速率随pH值的减小而增大,NO3-对反应速率有较强的抑制作用,Ca2+,Mg2+和SO42-对反应速率影响不大.利用GC-MS检测到降解产物四氯环己烯(TeCCH)和氯苯(CB)的存在,推测反应机制为双氯脱除反应和脱氯化氢反应. 展开更多
关键词 NZVI Γ-HCH 脱氯 反应动力学 反应机制
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部