期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater 被引量:2
1
作者 Qin Feifei Xu Wenfei +3 位作者 Hao Boyu Yin Linghao Song Jiayu Zhang Xiuxia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第4期47-57,共11页
Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(... Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications. 展开更多
关键词 oily wastewater nanoscale zero-valent iron(nzvi) spent mushroom substrate(SMS) SMS-nzvi composite
下载PDF
Corrosion behaviors and kinetics of nanoscale zero-valent iron in water:A review 被引量:1
2
作者 Chenliu Tang Xingyu Wang +2 位作者 Yufei Zhang Nuo Liu Xiang Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期391-406,共16页
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing... Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications.Herein,this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water.Firstly,Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion.The morphological,structural,and compositional evolution of(modified-)nZVI under different environmental conditions,assisted with microscopic and spectroscopic evidence,is then summarized.Afterwards,common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water.Specifically,stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed,emphasizing their capabilities in studying the dynamic iron corrosion processes.Finally,in the future,more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties.We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment. 展开更多
关键词 nanoscale zero-valent iron(nzvi) Corrosion behaviors Corrosion kinetics nzvi evolution
原文传递
Amino acids modified nanoscale zero-valent iron:Density functional theory calculations,experimental synthesis and application in the Fenton-like degradation of organic solvents
3
作者 Xingchen Yang Fucheng Ming +1 位作者 Jianlong Wang Lejin Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期296-309,共14页
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like deg... To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents. 展开更多
关键词 Amino acids nanoscale zero-valent iron Density functional theory Organic solvents Fenton-like degradation
原文传递
Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater
4
作者 Wen Liang Nian-qing Zhou +3 位作者 Chao-meng Dai Yan-ping Duan Lang Zhou Yao-jen Tu 《Journal of Groundwater Science and Engineering》 2021年第3期171-180,共10页
Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF d... Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF degradation by the combined process of zero-valent iron nanoparticles(nZVI)and nano calcium peroxide(nCaO_(2))were performed.A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO_(2)nanoparticles and pH value on the DCF removal.In the meantime,the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO_(2)nanoparticles in the reaction system.The results show that the nZVI/nCaO_(2)can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO_(2)added,resulting in a removal rate of greater than 90%in a 2-hour reaction with an initial pH of 5.The degradation rate of DCF was positively correlated with the dosage of nCaO_(2),and negatively correlated with both nZVI dosage and the initial pH value.The order of significance of the three factors is identified as pH value>nZVI dosage>nCaO_(2)dosage.In the continuous-flow reaction system,the DCF removal rates remained above 75%within 150 minutes at the pH of 5,with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO_(2).These results provide a theoretical basis for the nZVI/nCaO_(2)application to remove DCF in groundwater. 展开更多
关键词 nanoscale zero-valent iron(nzvi) Nano calcium peroxide(nCaO_(2)) DICLOFENAC Fenton-like reaction Groundwater pollution
下载PDF
Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron
5
作者 Tharindu N.Karunaratne Prashan M.Rodrigo +3 位作者 Daniel O.Oguntuyi Todd E.Mlsna Jilei Zhang Xuefeng Zhang 《Journal of Bioresources and Bioproducts》 EI CSCD 2023年第4期388-398,共11页
Carbothermal reduction using biochar(BC)is a green and effective method of synthesizing BCsupported nanoscale zero-valent iron(nanoFe^(0))composites.However,the effect of BC surface area on the structure,distribution,... Carbothermal reduction using biochar(BC)is a green and effective method of synthesizing BCsupported nanoscale zero-valent iron(nanoFe^(0))composites.However,the effect of BC surface area on the structure,distribution,and performance such as the heavy metal uptake capacity of nanoFe^(0)particles remains unclear.Soybean stover-based BCs with different surface areas(1.7−1472 m^(2)/g)were prepared in this study.They have been used for in-situ synthesis BCs-supported nanoFe^(0)particlesthrough carbothermal reduction of ferrous chloride.The BCs-supported nanoFe^(0)particles were found to be covered with graphene shells and dispersed onto BC surfaces,forming the BC-supported graphene-encapsulated nanoFe^(0)(BC-G@Fe^(0))composite.These graphene shells covering the nanoFe^(0)particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts.Increasing BC surface area decreased the average diameters of nanoFe^(0)particles,indicating a higher BC surface area alleviated the aggregation of nanoFe^(0)particles,which resulted in higher heavy metal uptake capacity.At the optimized condition,BC-G@Fe^(0)composite exhibited uptake capacities of 124.4,121.8,254.5,and 48.0 mg/g for Cu^(2+),Pb^(2+),Ag^(+),and As^(3+),respectively(pH 5,25℃).Moreover,the BC-G@Fe^(0)composite also demonstrated high stability for Cu^(2+)removal from the fixed-bed continuous flow,in which 1 g of BC-G@Fe^(0)can work for 120 h in a 4 mg/L Cu^(2+)flow continually and clean 28.6 L Cu^(2+)contaminated water.Furthermore,the BC-G@Fe^(0)composite can effectively immobilize the bioavailable As^(3+)from the contaminated soil,i.e.,5%(w)of BC-G@Fe^(0)composite addition can immobilize up to 92.2%bioavailable As^(3+)from the contaminated soil. 展开更多
关键词 Carbothermal reduction nanoscale zero-valent iron Heavy metal Fix-bed sorption Soil remediation
原文传递
The colorful chemistry of nanoscale zero-valent iron(nZVI)
6
作者 Yilong Hua Jing Liu +2 位作者 Tianhang Gu Wei Wang Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期1-3,共3页
Nanoscale zero-valent iron (nZVI) possesses unique chemistry and capability for the separation and transformation of a growing number of environmental contaminants. A nZVI particle consists of two nanoscale componen... Nanoscale zero-valent iron (nZVI) possesses unique chemistry and capability for the separation and transformation of a growing number of environmental contaminants. A nZVI particle consists of two nanoscale components, an iron (oxyhydr)oxides shell and a metallic iron core. This classical "core-shell" structure offers nZVI with unique and multifaceted reactivity of sorption, complexation, reduction and precipita- tion due to its strong small particle size for engineering deployment, large surface area, abundant reactive sites and electron-donating capacity for enhanced chemical activity. For over two decades, research has been steadily expanding our understanding on the reaction mechanisms and engineering performance of nZVI for soil and groundwater remediation, and more recently for wastewater treatment. 展开更多
关键词 nanoscale zero-valent iron (nzvi Environmental nanotechnology Dyes and pigments Wastewater treatment Spherical aberration-corrected scan-ning transmission electron micros-copy (Cs-STEM)
原文传递
Nanoencapsulation of arsenate with nanoscale zero-valent iron(nZVI):A 3D perspective 被引量:8
7
作者 Airong Liu Wei Wang +2 位作者 Jing Liu Rongbing Fu Wei-xian Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2018年第24期1641-1648,共8页
The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the ... The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the core-shell interface. The chemical compositions and the fine structure of nZVI are characterized with a combination of spherical aberration corrected scanning transmission electron microscopy(Cs-STEM), X-ray energy-dispersive spectroscopy(XEDS), electron energy loss spectroscopy(EELS), and high-resolution X-ray photoelectron spectroscopy(HR-XPS). Atomically resolved EELS at the oxygen K-edge unfolds that the Fe species in nZVI are well stratified from Fe(Ⅲ) oxides in the outermost periphery to a mixed Fe(Ⅲ)/Fe(Ⅱ) interlayer, then Fe(Ⅱ) oxide and the pure Fe(0) phase. Reactions between As(Ⅴ)and nZVI suggest that a well-structured local redox gradient exists within the shell layer, which serves as a thermodynamically favorable conduit for electron transfer from the iron core to the surface-bound As(Ⅴ). HR-XPS with ion sputtering shows that arsenic species shift from As(Ⅴ), As(Ⅲ)/As(Ⅴ) to As(Ⅴ)/As(Ⅲ)/As(0) from the iron oxide shell–water interface to the Fe(0) core. Results reinforce previous work on the efficacy of nZVI for removing and remediating arsenic while the analytical TEM methods are also applicable to the study of environmental interfaces and surface chemistry. 展开更多
关键词 ARSENATE nanoscale zero-valent iron Spherical aberration corrected scanning transmission ELECTRON microscopy X-RAY energy-dispersive SPECTROSCOPY ELECTRON ENERGY-LOSS SPECTROSCOPY X-RAY photoelectron SPECTROSCOPY
原文传递
Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment 被引量:2
8
作者 Yanlai HAN Michael D. Y. YANG +1 位作者 Weixian ZHANG Weile YAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第5期813-822,共10页
Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a faci... Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu (II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg.L~ or lower) due to accelerated deactivation of iron surface at elevated nitrate concentra- tions. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research. 展开更多
关键词 iron nanoparticles nanoscale iron particles(nzvi SYNTHESIS characterization Cu(II) reduction nitratereduction
原文传递
Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron:High resolution chemical mapping of the passivation layer 被引量:4
9
作者 Xiao-yue Huang Lan Ling Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期4-13,共10页
Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). N... Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(〈1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(〉1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 〈 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 〉 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation. 展开更多
关键词 nanoscale zero-valent iron (nzvi Hexavalent chromium Solid phase reaction PASSIVATION Spherical-aberration-correctedscanning transmission electronmicroscopy (Cs-STEM)
原文传递
Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron:Synergetic effect,efficiency optimization and mechanism 被引量:9
10
作者 Xiaoguang Li Ying Zhao +5 位作者 Beidou Xi Xiaoguang Meng Bin Gong Rui Li Xing Peng Hongliang Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期8-17,共10页
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization... In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications. 展开更多
关键词 nanoscale zero-valent iron CLAY Material optimization Methyl Orange
原文传递
Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline 被引量:9
11
作者 Yuwei Wu Qinyan Yue +2 位作者 Yuan Gao Zhongfei Ren Baoyu Gao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第7期173-182,共10页
In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by ... In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by one-step liquid-phase reduction and applied for oxytetracycline(OTC) removal. The effects of contact time and initial p H on the removal efficiency were studied. The as-prepared nanoscale particles were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Finally, the degradation mechanisms of OTC utilizing the as-prepared nanoparticles were investigated by using X-ray photoelectron spectroscopy(XPS) and mass spectrometry(MS). Cu/n ZVI presented remarkable ability for OTC degradation and removed71.44% of OTC(100 mg/L) in 4 hr, while only 62.34% and 31.05% of OTC was degraded by Ni/nZVI and nZVI respectively. XPS and MS analysis suggested that OTC was broken down to form small molecules by ·OH radicals generated from the corrosion of Fe0. Cu/nZVI and Ni/n ZVI have been proved to have potential as materials for application in OTC removal because of their significant degradation ability toward OTC. 展开更多
关键词 Bimetallic nanoscale zero-valent iron particles OXYTETRACYCLINE Degradation mechanism Hydroxyl radicals
原文传递
Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite 被引量:5
12
作者 Qiong Bin Bin Lin +5 位作者 Ke Zhu Yaqian Shen Yuanyuan Man Boyang Wang Changfei Lai Wenjin Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第2期90-102,共13页
Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminant... Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminants.Herein, we propose a new S-nZVI/graphene aerogel(S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene(TCE) from water.Three-dimensional porous graphene aerogel(GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs.The TCE removal rates of Fe S, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2 hr, respectively.Furthermore, TCE was completely removed within 50 min by S-nZVI/GA.The TCE removal rate increased with increasing p H and temperature, and TCE removal followed the pseudo-first-order kinetic model.The results demonstrate the great potential of S-nZVI/GA composite as a low-cost,easily separated and superior monolithic adsorbent for removal of organic pollutants. 展开更多
关键词 Organic pollutant REMOVAL TRICHLOROETHYLENE (TCE) Sulfide-modified nanoscale zero-valent iron GRAPHENE AEROGEL Nanocomposite
原文传递
Stabilization of nanoscale zero-valent iron in water with mesoporous carbon(n ZVI@MC) 被引量:4
13
作者 Junming Shi Jing Wang +2 位作者 Wei Wang Wei Teng Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第7期28-33,共6页
Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxid... Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxidation. Herein, we report the nZVI incorporated into mesoporous carbon(MC) to enhance stability in aqueous solution and mobility in porous media. Meanwhile, the reactivity of nZVI is preserved thanks to high temperature treatment and confinement of carbon framework. Small-sized(~16 nm) nZVI nanoparticles are uniformly dispersed in the whole carbon frameworks. Importantly, the nanoparticles are partially trapped across the carbon walls with a portion exposed to the mesopore channels. This unique structure not only is conductive to hold the nZVI tightly to avoid aggregation during mobility but also provides accessible active sites for reactivity. This new type of nanomaterial contains ~10 wt% of iron. The nZVI@MC possesses a high surface area(~ 500 m^2/g) and uniform mesopores(~ 4.2 nm) for efficient pollutant diffusion and reactions. Also, high porosity of nZVI@MC contributes to the stability and mobility of nZVI. Laboratory column experiments further demonstrate that nZVI@MC suspension(~4 g Fe/L) can pass through sand columns much more efficiently than bare nZVI while the high reactivity of nZVI@MC is confirmed from reactions with Ni(II). It exhibits remarkably better performance in nickel(20 mg/L) extraction than mesoporous carbon, with 88.0% and 33.0%uptake in 5 min, respectively. 展开更多
关键词 MESOPOROUS carbon nanoscale zero-valent iron MOBILITY Porous media HEAVY metal removal
原文传递
Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron 被引量:5
14
作者 Yu Wang Dongmei Zhou +2 位作者 Yujun Wang Xiangdong Zhu Shengyang Jin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第8期1286-1292,共7页
Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanosca... Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated. The results showed that the dechlorination of 4-C1BP by NZVI increased with decreased solution pH. When the initial pH value was 4.0, 5.5, 6.8, and 9.0, the de.chlorination efficiencies of 4-CIBP after 48 hr were 53.8%, 47.8%, 35.7%, and 35.6%, respectively. The presence of humic acid inhibited the reduction of 4-CIBP in the first 4 hi', and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr. Divalent metal ions, Co2+, Cu2+, and Ni2+, were reduced and formed bimetals with NZVI, thereby enhanced the dechlorination of 4-CIBP. The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2~, Cuz~ and Niz~ were 66.1%, 66.0% and 64.6% in 48 hr, and then increased to 67.9%, 71.3% and 73.5%, after 96 hr respectively. The dechlorination kinetics of 4-C1BP by the NZVI in all cases followed pseudo-first order model. The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment. 展开更多
关键词 4-chlorobiphenyl nanoscale zero-valent iron humic acid metal ions DECHLORINATION
原文传递
Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene 被引量:3
15
作者 Gaoling Wei Jinhua Zhang +4 位作者 Jinqiu Luo Huajian Xue Deyin Huang Zhiyang Cheng Xinbai Jiang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2019年第4期167-177,共11页
The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZV... The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZVI was distributed on oak sawdust-derived biochar (BC) to obtain the nZVI/BC composite for the highly efficient reduction of nitrobenzene (NB). nZVI, BC and nZVI/BC were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For nZVI/BC, nZVI particles were uniformly dispersed on BC. nZVI/BC exhibited higher removal efficiency for NB than the simple summation of bare nZVI and BC. The removal mechanism was investigated through the analyses of UV-Visible spectra, mass balance and XPS. NB was quickly adsorbed on the surface of nZVI/BC, and then gradually reduced to aniline (AN), accompanied by the oxidation of nZVI to magnetite. The effects of several reaction parameters, e.g., NB concentration, reaction pH and nZVI/BC aging time, on the removal of NB were also studied. In addition to high reactivity, the loading of nZVI on biochar significantly alleviated Fe leaching and enhanced the durability of nZVI. 展开更多
关键词 BIOCHAR nanoscale zero-valent iron NITROBENZENE Reduction Adsorption SYNERGISTIC effec
原文传递
Graphene-supported nanoscale zero-valent iron:Removal of phosphorus from aqueous solution and mechanistic study 被引量:12
16
作者 Fenglin Liu JingHe Yang +5 位作者 Jiane Zuo Ding Ma Lili Gan Bangmi Xie Pei Wang Bo Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第8期1751-1762,共12页
Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is ve... Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is very important for the health of the aqueous environment. Graphene was selected to support nanoscale zero-valent iron(nZVI)for phosphorus removal from synthetic rainwater runoff in this article. Compared with nZVI supported on other porous materials,graphene-supported nZVI(G-nZVI) could remove phosphorus more efficiently. The amount of nZVI in G-nZVI was an important factor in the removal of phosphorus by G-nZVI,and G-nZVI with 20 wt.% nZVI(20% G-nZVI)could remove phosphorus most efficiently. The nZVI was very stable and could disperse very well on graphene,as characterized by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). X-ray photoelectron spectroscopy(XPS),Fourier Transform infrared spectroscopy(FT-IR) and Raman spectroscopy were used to elucidate the reaction process,and the results indicated that Fe-O-P was formed after phosphorus was adsorbed by G-nZVI. The results obtained from X-ray diffraction(XRD) indicated that the reaction product between nZVI supported on graphene and phosphorus was Fe3(PO4)2·8H2O(Vivianite). It was confirmed that the specific reaction mechanism for the removal of phosphorus with nZVI or G-nZVI was mainly due to chemical reaction between nZVI and phosphorus. 展开更多
关键词 nanoscale zero valent iron Phosphorus Graphene Graphene-supported nzvi
原文传递
Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium(Ⅵ)in aqueous solutions 被引量:3
17
作者 Hongyi Zhou Mengyao Ye +3 位作者 Yongkang Zhao Shams Ali Baig Ning Huang Mengyan Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期227-239,共13页
Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully est... Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully established by modifying nanoscale zero-valent iron(nZVI)with SC and biochar(BC),and was employed to remove Cr(Ⅵ)from aqueous solu-tions.The nZVI,SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analy-ses(TGA),vibrating sample magnetometer(VSM),scanning electron microscope(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results showed that nZVI was successfully loaded on the biochar,and both the agglomeration and surface pas-sivation problems of nanoparticles were well resolved.The dosage of SC,C∶Fe,initial pH and Cr(Ⅵ)concentration demonstrated direct effects on the removal efficiency.The maximum Cr(Ⅵ)removal rate and the removal capacity within 60 min were 99.7%and 199.46 mg/g,respectively(C∶Fe was 1∶1,SC dosage was 1.12 mol.%,temperature was 25℃,pH=7,and the original concentration of Cr(Ⅵ)was 20 mg/L).The reaction confirmed to follow the pseudo-second-order reaction kinetics,and the order of the reaction rate constant k was as follows:SC-nZVI@BC>nZVI@BC>SC-nZVI>nZVI.In addition,the mechanism of Cr(Ⅵ)removal by SC-nZVI@BC mainly involved adsorption,reduction and co-precipitation,and the reduction of Cr(Ⅵ)to Cr(Ⅲ)by nano Fe0 played a vital role.Findings from the present study demon-strated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ)with an improved synergistic characteristic by SC and BC. 展开更多
关键词 nanoscale zero-valent iron Cr(Ⅵ)removal Sodium citrate BIOCHAR Synergistic promotion
原文传递
Debromination of decabromodiphenyl ether by organo-montmorillonitesupported nanoscale zero-valent iron: Preparation, characterization and influence factors 被引量:13
18
作者 Zhihua Pang Mengyue Yan +2 位作者 Xiaoshan Jia Zhenxing Wang Jianyu Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期483-491,共9页
An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion... An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmoriUonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased. 展开更多
关键词 supported nanoscale zero-valent iron organo-montmorillonite decabromodiphenyl ether (BDE-209) degradation influence factors
原文传递
Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants 被引量:1
19
作者 Nuo Liu Jing Liu +2 位作者 Hong Wang Shaolin Li Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第8期140-146,共7页
Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform i... Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review. 展开更多
关键词 Environmental microbiology nanoscale zero-valent iron(nzvi) REMEDIATION Wastewater nzvi-bio system
原文传递
An adsorption study of^99Tc using nanoscale zero-valent iron supported on D001 resin 被引量:1
20
作者 Lingxiao FU Jianhua ZU +2 位作者 Linfeng HE Enxi GU Huan WANG 《Frontiers in Energy》 SCIE CSCD 2020年第1期11-17,共7页
Nanoscale zero-valent iron(nZVI)supported on D001 resin(D001-nZVI)was synthesized for adsorption of high solubility and mobility radionuclide^99Tc.Re(VII),a chemical substitute for^99Tc,was utilized in batch experimen... Nanoscale zero-valent iron(nZVI)supported on D001 resin(D001-nZVI)was synthesized for adsorption of high solubility and mobility radionuclide^99Tc.Re(VII),a chemical substitute for^99Tc,was utilized in batch experiments to investigate the feasibility and adsorption mechanism toward Tc(VII).Factors(pH,resin dose)affecting Re(VII)adsorption were studied.The high adsorption efficiency of Re(VII)at pH=3 and the solid-liquid ratio of 20 g/L.X-ray diffraction patterns revealed the reduction of ReO^?4 into ReO2 immobilized in D001-nZVI.Based on the optimum conditions of Re(VII)adsorption,the removal experiments of Tc(VII)were conducted where the adsorption efficiency of Tc(VII)can reach 94%.Column experiments showed that the Thomas model gave a good fit to the adsorption process of Re(VII)and the maximum dynamic adsorption capacity was 0.2910 mg/g. 展开更多
关键词 TECHNETIUM nanoscale zero-valent iron(nzvi) D001 RESIN ADSORPTION
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部