期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Molybdenum-doped ordered L1_(0)-PdZn nanosheets for enhanced oxygen reduction electrocatalysis 被引量:1
1
作者 Jiashun Liang Yu Xia +9 位作者 Xuan Liu Fanyang Huang Jinjia Liu Shenzhou Li Tanyuan Wang Shuhong Jiao Ruiguo Cao Jiantao Han Hsing-Lin Wang Qing Li 《SusMat》 2022年第3期347-356,共10页
Ultrathin Pd-based two-dimensional(2D)nanosheets(NSs)with tunable physicochemical properties have emerged as promising candidate for oxygen reduction reaction(ORR).Unfortunately,structurally ordered Pd-based NSs can b... Ultrathin Pd-based two-dimensional(2D)nanosheets(NSs)with tunable physicochemical properties have emerged as promising candidate for oxygen reduction reaction(ORR).Unfortunately,structurally ordered Pd-based NSs can be hardly prepared as high temperature annealing(>600℃)is necessary for disorder to order phase transition,making it a considerable challenge for morphology control.Herein,a new class of ultrathin structurally ordered Mo-doped L1_(0)-PdZn NSs with curved geometry and abundant defects/lattice distortions is reported as an efficient oxygen reduction electrocatalyst in alkaline solution.It is found that Mo(CO)_(6) serves as reducing agent and Mo source to generate the unique ordered 2D morphology,which leads to the significantly modified electronic structure.The developed L1_(0)-Mo-PdZn NSs exhibit excellent ORR mass activity of 2.6 A mg_(Pd)^(−1) at 0.9 V versus reversible hydrogen electrode,31.5 and 17.6 times higher than those of Pd/C and Pt/C,respectively,outperforming most of the reported Pdbased ORR electrocatalsyts.Impressively,L1_(0)-Mo-PdZn NSs is extremely stable for ORR,with only 2.3% activity loss after 10000 potential cycles.Density functional theory study suggests that ordered L1_(0) structure and Mo doping can raise the vacancy formation energy of Pd atom and thus promote the ORR stability. 展开更多
关键词 ELECTROCATALYSIS fuel cell nanosheeets oxygen reduction Pd-based intermetallics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部