Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni...Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V...MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.展开更多
The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C...The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.展开更多
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ...Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries.展开更多
As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the ...As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the relationship between heavy oil composition and potassium storage performance remains unclear.Using heavy oils containing distinct chemical groups as the carbon source,namely fluid catalytic cracking slurry(FCCS),petroleum asphalt(PA)and deoiled asphalt(DOA),three carbon nanosheets(CNS)were prepared through a molten salt method,and used as the anodes for PIBs.The composition of the heavy oil determines the lamellar thicknesses,sp3-C/sp2-C ratio and defect concentration,thereby affecting the potassium storage performance.The high content of aromatic hydrocarbons and moderate amount of heavy component moieties in FCCS produce carbon nanosheets(CNS-FCCS)that have a smaller layer thickness,larger interlayer spacing(0.372 nm),and increased number of folds than in CNS derived from the other three precursors.These features give it faster charge/ion transfer,more potassium storage sites and better reaction kinetics.CNS-FCCS has a remarkable K^(+)storage capacity(248.7 mAh g^(-1) after 100 cycles at 0.1 A g^(-1)),long cycle lifespan(190.8 mAh g^(-1) after 800 cycles at 1.0 A g^(-1))and excellent rate capability,ranking it among the best materials for this application.This work sheds light on the influence of heavy oil composition on carbon structure and electrochemical performance,and provides guidance for the design and development of advanced heavy oil-derived carbon electrodes for PIBs.展开更多
The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces c...The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts.展开更多
Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spec...Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2).展开更多
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)...Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.展开更多
Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband...Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.展开更多
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ...Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.展开更多
Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely li...Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely limits the overall electrocatalytic performance due to their insufficient cooperative effects.Herein,we report a controllable and robust heterointerface engineering strategy for the bottom-up fabrication of rhombic Rh nanosheets in situ confined on Ti_3C_(2)T_x MXene nanolamellas(Rh NS/MXene)via a convenient stereoassembly process.This unique design concept gives the resulting 2D/2D Rh NS/MXene heterostructure intriguing textural features,including large accessible surface areas,strong"face-toface"interfacial interactions,homogeneous Rh nanosheet distribution,ameliorative electronic structure,and high electronic conductivity.As a consequence,the as-prepared Rh NS/MXene nanoarchitectures exhibit exceptional electrocatalytic methanol oxidation properties in terms of a large electrochemically active surface area of 126.2 m~2 g_(Rh)~(-1),a high mass activity of 1056.9 mA mg_(Rh)-~1,and a long service life,which significantly outperform those of conventional particle-shaped Rh catalysts supported by carbon black,carbon nanotubes,reduced graphene oxide,and MXene matrixes as well as the commercial Pt nanoparticle/carbon black and Pd nanoparticle/carbon black catalysts with the same noble metal loading amount.Density functional theory calculations further demonstrate that the direct electronic interaction at the well-contacted 2D/2D heterointerfaces effectively enhances the adsorption energy of Rh nanosheets and induces a left shift of the d-band center,thereby making the Rh NS/MXene configuration suffer less from CO poisoning.This work highlights the importance of rational heterointerface design in the construction of advanced noble metal/MXene electrocatalysts,which may provide new avenues for developing the next-generation DMFC devices.展开更多
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,...As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications.展开更多
Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance...Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).展开更多
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proto...Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.展开更多
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic...By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃.展开更多
Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possi...Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recovery to∼35.43%.By observing and analyzing the interfacial behavior of MoS_(2)nanosheets under stimulated reservoir conditions,it was found that the presence of an interfacial tension gradient and the formation of a climbing film may play an essential role in the spontaneous imbibition mechanism.This work innovatively uses two-dimensional MoS_(2)nanosheets to modify regular slickwater and confirms the feasibility of flake-like nanomaterials to improve the performance of slickwater.The study also reveals the underlying mechanism of enhanced imbibition efficiency of the nano-composites.展开更多
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-...A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.展开更多
基金This work was supported by the National Key Research and Development Project(Nos.2019YFA0705403,2022YFA1205300)the National Natural Science Foundation of China(No.T2293693)+3 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(No.2017ZT07C341)the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004)Zhiyuan Xiong thanks the financial support from South China University of Technology.
文摘Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金the support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022MB106national training program of innovation and entrepreneurship for undergraduates,Grant/Award Number:202210424099National Natural Science Foundation of China,Grant/Award Numbers:21601067,21701057,21905147。
文摘The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.
基金financially supported by the National Natural Science Foundation of China(31890771)the Young Elite Scientists Sponsorship Program from the National Forestry and Grassland Administration of China(2019132614)+1 种基金the Science and Technology Innovation Program of Hunan Province(2022RC3054)the Hunan Provincial Innovation Foundation for Postgraduate(CX20230758)。
文摘Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries.
文摘As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the relationship between heavy oil composition and potassium storage performance remains unclear.Using heavy oils containing distinct chemical groups as the carbon source,namely fluid catalytic cracking slurry(FCCS),petroleum asphalt(PA)and deoiled asphalt(DOA),three carbon nanosheets(CNS)were prepared through a molten salt method,and used as the anodes for PIBs.The composition of the heavy oil determines the lamellar thicknesses,sp3-C/sp2-C ratio and defect concentration,thereby affecting the potassium storage performance.The high content of aromatic hydrocarbons and moderate amount of heavy component moieties in FCCS produce carbon nanosheets(CNS-FCCS)that have a smaller layer thickness,larger interlayer spacing(0.372 nm),and increased number of folds than in CNS derived from the other three precursors.These features give it faster charge/ion transfer,more potassium storage sites and better reaction kinetics.CNS-FCCS has a remarkable K^(+)storage capacity(248.7 mAh g^(-1) after 100 cycles at 0.1 A g^(-1)),long cycle lifespan(190.8 mAh g^(-1) after 800 cycles at 1.0 A g^(-1))and excellent rate capability,ranking it among the best materials for this application.This work sheds light on the influence of heavy oil composition on carbon structure and electrochemical performance,and provides guidance for the design and development of advanced heavy oil-derived carbon electrodes for PIBs.
基金partial support from the Jiujiang Research Institute at Xiamen University.
文摘The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts.
基金Funded by the National Natural Science Foundation of China(Nos.51872214 and 52172124)the Fundamental Research Funds for the Central Universities(WUT:2021Ⅲ019JC and 2018Ⅲ041GX)。
文摘Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2).
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
基金supported by the National Natural Science Foundation of China(21571038,22035004)the Education Department of Guizhou Province(2021312)+2 种基金the Foundation of Guizhou Province(2019-5666)the National Key R&D Program of China(2017YFA0700101)the State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,202009)。
文摘Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.
基金financial support from the National Natural Science Foundation of China(Nos.21776026,22075034,and 22178037)the Liaoning Revitalization Talents Program,China(Nos.XLYC1902037 and XLYC2002114)the Natural Science Foundation of Liaoning Province of China(No.2021-MS-303)。
文摘Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.
基金the funding from Natural Science Foundation of China(No.52003163)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010670)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170810105439418 and 20200812112006001)NTUT-SZU Joint Research Program(Nos.2022005 and 2022015)
文摘Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
基金supported by the National Natural Science Foundation of China(11872171 and 22209037)the Project on Excellent Post-graduate Dissertation of Hohai University。
文摘Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely limits the overall electrocatalytic performance due to their insufficient cooperative effects.Herein,we report a controllable and robust heterointerface engineering strategy for the bottom-up fabrication of rhombic Rh nanosheets in situ confined on Ti_3C_(2)T_x MXene nanolamellas(Rh NS/MXene)via a convenient stereoassembly process.This unique design concept gives the resulting 2D/2D Rh NS/MXene heterostructure intriguing textural features,including large accessible surface areas,strong"face-toface"interfacial interactions,homogeneous Rh nanosheet distribution,ameliorative electronic structure,and high electronic conductivity.As a consequence,the as-prepared Rh NS/MXene nanoarchitectures exhibit exceptional electrocatalytic methanol oxidation properties in terms of a large electrochemically active surface area of 126.2 m~2 g_(Rh)~(-1),a high mass activity of 1056.9 mA mg_(Rh)-~1,and a long service life,which significantly outperform those of conventional particle-shaped Rh catalysts supported by carbon black,carbon nanotubes,reduced graphene oxide,and MXene matrixes as well as the commercial Pt nanoparticle/carbon black and Pd nanoparticle/carbon black catalysts with the same noble metal loading amount.Density functional theory calculations further demonstrate that the direct electronic interaction at the well-contacted 2D/2D heterointerfaces effectively enhances the adsorption energy of Rh nanosheets and induces a left shift of the d-band center,thereby making the Rh NS/MXene configuration suffer less from CO poisoning.This work highlights the importance of rational heterointerface design in the construction of advanced noble metal/MXene electrocatalysts,which may provide new avenues for developing the next-generation DMFC devices.
基金supported by the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(MSIT)(RS2023-00235596)and ERC Center(2022R1A5A1033719)。
文摘As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications.
基金the National Science Fund for Distinguished Young Scholars(Grant No.52125103)the National Natural Science Foundation of China(Grant Nos.52301232,52071041,12074048,and 12147102)China Postdoctoral Science Foundation(Grant No.2022M720552).
文摘Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).
基金The authors greatly appreciate the support from the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
基金the National Natural Science Foundation of China (22178120)Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306022)Guangzhou Technology Project (202002030164)。
文摘By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃.
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52004306 and 52174045)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant Nos.ZLZX2020-01 and ZLZX2020-02)the National Sciencea and Technology Major Projects of China(Grant Nos.2016ZX05030005and 2016ZX05051003).
文摘Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recovery to∼35.43%.By observing and analyzing the interfacial behavior of MoS_(2)nanosheets under stimulated reservoir conditions,it was found that the presence of an interfacial tension gradient and the formation of a climbing film may play an essential role in the spontaneous imbibition mechanism.This work innovatively uses two-dimensional MoS_(2)nanosheets to modify regular slickwater and confirms the feasibility of flake-like nanomaterials to improve the performance of slickwater.The study also reveals the underlying mechanism of enhanced imbibition efficiency of the nano-composites.
基金support of the National Natural Science Foundation of China(Grant Nos.52275565,NSFC-JSPS:52011540005,and 62104155)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515011667)the Guangdong Kangyi Special Fund(Grant No.2020KZDZX1173).
文摘A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.