期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration 被引量:5
1
作者 Wei Jia Baohu Wu +1 位作者 Shengtong Sun Peiyi Wu 《Nano Research》 SCIE EI CAS CSCD 2020年第11期2973-2978,共6页
Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially s... Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation,but limited by everchanging thicknesses arising from unstable interfaces.Herein,an interfacially stable,thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework(MOF)nanosheets,which function via two cyclic amide-bearing polymers,thermo-responsive poly(N-vinyl caprolactam)(PVCL)for adjusting channel size,and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance.Owing to the microporosity of MOF nanosheets and controllable interface wettability,the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness.Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains. 展开更多
关键词 metal-organic framework(MOF)nanosheet membrane thermo-responsiveness molecular separation infrared(IR)spectroscopy
原文传递
Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammoniaassisted strategy 被引量:6
2
作者 Yujia Li Lu Lin +5 位作者 Min Tu Pei Nian Ashlee J. Howarth Omar K. Farha Jieshan Qiu Xiongfu Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第4期1850-1860,共11页
Shaping crystalline porous materials such as metal organic frameworks (MOFs) and zeolites into two-dimensional (2D) nanosheet forms is highly desirable for developing high-performance molecular sieving membranes. ... Shaping crystalline porous materials such as metal organic frameworks (MOFs) and zeolites into two-dimensional (2D) nanosheet forms is highly desirable for developing high-performance molecular sieving membranes. However, conventional exfoliation-deposition is complex and challenging for the large-scale fabrication of nanosheet MOF tubular membranes. Here, for the first time, we report a direct growth technique by ZnO self-conversion and ammonia assistance to fabricate zeolitic imidazolate framework (ZIF) membranes consisting of 2D nanosheets on porous hollow fiber substrates; the membranes are suitable for large-scale industrial gas separation processes. The proposed fabrication process for ZIF nanosheet membranes is based on the localized self-conversion of a pre-deposited thin layer of ZnO in a ligand solution containing ammonium hydroxide as a modulator. The resulting ZIF 2D nanosheet tubular membrane is highly oriented and only 50 nm in thickness. It exhibits excellent molecular sieving performance, with high H2 permeance and selectivity for H2/CO2 separation. This technique shows great promise in MOF nanosheet membrane fabrication for large-scale molecular sieving applications. 展开更多
关键词 nanosheet nanosheet membrane metal organic framework membrane oriented growth gas separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部