With the aim of producing simple and effective transparent conducting electrodes, the conducting polymer poly(3-hexylthiophene) (P3HT) incorporated with reduced graphene oxide film (rGO) (called rGO-P3HT) was prepared...With the aim of producing simple and effective transparent conducting electrodes, the conducting polymer poly(3-hexylthiophene) (P3HT) incorporated with reduced graphene oxide film (rGO) (called rGO-P3HT) was prepared by spin-coating method. Structural, electrical and optical characterization showed that rGO-P3HT films 9.0 wt% P3HT exhibited good stability when exposed to the ambient atmosphere. These composite films of 200 nm thickness possess a sheet resistance and transparency of R□~ 17Ω and T ~ 72%, respectively. Owing to containing conducting polymer, rGO-P3HT-coated glass could be efficiently used in photovoltaic applications, in organic solar cells in particular, with the replacement of the indium tin oxide (ITO) and fluorine tin oxide (FTO) electrodes.展开更多
The mixed P3HT (poly(3-hexylthiophene)) and [6,6]-PCBM (phenyl C61-butyric acid methyl ester) organic thin films were investigated for electronic structure using UV-Vis spectrophotometer and PESA (photo-electro...The mixed P3HT (poly(3-hexylthiophene)) and [6,6]-PCBM (phenyl C61-butyric acid methyl ester) organic thin films were investigated for electronic structure using UV-Vis spectrophotometer and PESA (photo-electron spectroscopy in air). Furthermore, ESR (electron spin resonance) and AFM (atomic force microscopy) were used to investigate the surface morphology and molecular orientation, respectively. ESR analysis indicated the molecular orientation of the P3HT crystalline in the blend thin films, which the crystalline oriented normal to the substrate with distribution of 35°. AFM images indicated that the surface morphology of P3HT film was affected by the presence of PCBM nanoparticles. Solution-processed OTFTs (organic thin-film transistors) based on P3HT/PCBM blend thin film in a top source-drain contact structure was fabricated, and the electrical characteristics of the devices were also investigated. A unipolar property with p-channel characteristics were obtained in glove box measurement.展开更多
Organic solar cells (OSCs) is a new generation of solar cells have emerged as an alternative to conventional Si-based solar cells owing to their advantages of low cost, ease of fabrication and their potential for th...Organic solar cells (OSCs) is a new generation of solar cells have emerged as an alternative to conventional Si-based solar cells owing to their advantages of low cost, ease of fabrication and their potential for the manufacture of flexible and large area solar cells. So we chose that part to beginning study of the material and all parameters effects in environmental condition because the solar cell working in environment. In this study the fabrication of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend flexible thin film using spin coating was reported. Process parameters like solvent, electron donor to acceptor ratio, concentration and temperature were also studied. We used solvent systems to make active layer of P3HT:PCBM composite and PEDOT:PSS as a buffer layer. Highest absorption was obtained for the flexible thin film made with 1:1 and 1:0.75 ratio of P3HT to PCBM. Chloroform solvent in 40 gm/ml concentration at 90 ~C was the optimum conditions to make flexible device.展开更多
In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and ...In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications.展开更多
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via...The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.展开更多
Organic thin film transistors(OTFTs) based on poly(3-hexylthiophene)(P3HT)/Zinc oxide(ZnO) nanorods composite films as the active layers were prepared by spray-coating process. The OTFTs with P3HT/ZnO-nanorods composi...Organic thin film transistors(OTFTs) based on poly(3-hexylthiophene)(P3HT)/Zinc oxide(ZnO) nanorods composite films as the active layers were prepared by spray-coating process. The OTFTs with P3HT/ZnO-nanorods composite films owned higher carriers mobility than the OTFT based on pure P3 HT. It can be found that the mobility of OTFTs increased by 135% due to ZnO-nanorods doping. This was attributed to the improvement of the P3 HT crystallinity and the optimization of polymer chains orientation. Meanwhile, because of the distinction of work function between P3 HT and ZnO, the majority carriers would accumulate on either side of the P3HT-ZnO interface which benefited carrier transfer. The influence on the mobility of composite film was studied. In addition, the threshold voltage of devices changed positively with the increase of ZnO-nanorods due to the decrease of electrostatic potential for P3HT/ZnO-nanorods composite films. The effect could be explained by the energy level theory of semiconductor.展开更多
文摘With the aim of producing simple and effective transparent conducting electrodes, the conducting polymer poly(3-hexylthiophene) (P3HT) incorporated with reduced graphene oxide film (rGO) (called rGO-P3HT) was prepared by spin-coating method. Structural, electrical and optical characterization showed that rGO-P3HT films 9.0 wt% P3HT exhibited good stability when exposed to the ambient atmosphere. These composite films of 200 nm thickness possess a sheet resistance and transparency of R□~ 17Ω and T ~ 72%, respectively. Owing to containing conducting polymer, rGO-P3HT-coated glass could be efficiently used in photovoltaic applications, in organic solar cells in particular, with the replacement of the indium tin oxide (ITO) and fluorine tin oxide (FTO) electrodes.
文摘The mixed P3HT (poly(3-hexylthiophene)) and [6,6]-PCBM (phenyl C61-butyric acid methyl ester) organic thin films were investigated for electronic structure using UV-Vis spectrophotometer and PESA (photo-electron spectroscopy in air). Furthermore, ESR (electron spin resonance) and AFM (atomic force microscopy) were used to investigate the surface morphology and molecular orientation, respectively. ESR analysis indicated the molecular orientation of the P3HT crystalline in the blend thin films, which the crystalline oriented normal to the substrate with distribution of 35°. AFM images indicated that the surface morphology of P3HT film was affected by the presence of PCBM nanoparticles. Solution-processed OTFTs (organic thin-film transistors) based on P3HT/PCBM blend thin film in a top source-drain contact structure was fabricated, and the electrical characteristics of the devices were also investigated. A unipolar property with p-channel characteristics were obtained in glove box measurement.
文摘Organic solar cells (OSCs) is a new generation of solar cells have emerged as an alternative to conventional Si-based solar cells owing to their advantages of low cost, ease of fabrication and their potential for the manufacture of flexible and large area solar cells. So we chose that part to beginning study of the material and all parameters effects in environmental condition because the solar cell working in environment. In this study the fabrication of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend flexible thin film using spin coating was reported. Process parameters like solvent, electron donor to acceptor ratio, concentration and temperature were also studied. We used solvent systems to make active layer of P3HT:PCBM composite and PEDOT:PSS as a buffer layer. Highest absorption was obtained for the flexible thin film made with 1:1 and 1:0.75 ratio of P3HT to PCBM. Chloroform solvent in 40 gm/ml concentration at 90 ~C was the optimum conditions to make flexible device.
基金supported by the National Natural Science Foundation of China(No.21975029)。
文摘In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 20621401, 20834005,51073151)the Ministry of Science and Technology of China (No. 2009CB623604)
文摘The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.
基金supported by the foundation for Innovation Research Groups of the National Natural Science Foundation of China(NSFC)(Grant No.61421002)the National Natural Science Foundation of China(Grant Nos.61571097)
文摘Organic thin film transistors(OTFTs) based on poly(3-hexylthiophene)(P3HT)/Zinc oxide(ZnO) nanorods composite films as the active layers were prepared by spray-coating process. The OTFTs with P3HT/ZnO-nanorods composite films owned higher carriers mobility than the OTFT based on pure P3 HT. It can be found that the mobility of OTFTs increased by 135% due to ZnO-nanorods doping. This was attributed to the improvement of the P3 HT crystallinity and the optimization of polymer chains orientation. Meanwhile, because of the distinction of work function between P3 HT and ZnO, the majority carriers would accumulate on either side of the P3HT-ZnO interface which benefited carrier transfer. The influence on the mobility of composite film was studied. In addition, the threshold voltage of devices changed positively with the increase of ZnO-nanorods due to the decrease of electrostatic potential for P3HT/ZnO-nanorods composite films. The effect could be explained by the energy level theory of semiconductor.