Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of...Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.展开更多
Nanosized ZSM 5 zeolite was synthesized by hydrothermal method and characterized by XRD and TEM techniques. The specific heat of the nanosized ZSM 5 zeolite was measured in the temperature range from 79 to 370 K, and ...Nanosized ZSM 5 zeolite was synthesized by hydrothermal method and characterized by XRD and TEM techniques. The specific heat of the nanosized ZSM 5 zeolite was measured in the temperature range from 79 to 370 K, and its enhancement in specific heat was observed as compared with the corresponding microsized zeolite, indicating that the nanosized ZSM 5 zeolite possesses higher surface activity. The thermostability of the samples was determined by differential scanning calorimetric (DSC) and thermogravimetric (TG) techniques. The DSC results showed that, for the nanosized ZSM 5, a broad exothermic peak is observed from 1?300 K; for the microsized ZSM 5, the corresponding exothermic peak begins at 1?400 K, and a distinct phase transition can be observed at 1?620 K. The TG results showed that, for the nanozised ZSM 5, the maximum mass loss ratio is 6 9%, and two mass loss stages can be observed in the temperature ranges of 298~663 K and 923~ 1?273 K, respectively; for the microsized ZSM 5, the maximum mass loss ratio is 6 5% and it is more stable than the nanosized ZSM 5.展开更多
Effect of different alkali metal salts on the crystal size and the crystallization rate of ZSM 5 zeolite was detailedly investigated in this paper. The samples prepared by adding the different alkali metal salts were ...Effect of different alkali metal salts on the crystal size and the crystallization rate of ZSM 5 zeolite was detailedly investigated in this paper. The samples prepared by adding the different alkali metal salts were characterized by using XRD, TEM, TG DSC, BET and IR techniques. The XRD results showed that, for the nanosized ZSM 5 zeolite, the characteristic peaks broadened on the XRD patterns in comparison with the microsized ZSM 5 zeolite. The SEM results verified that the crystal size of zeolites prepared by adding different alkali metal salts had different results, and adding NaCl, NaC2H3O2 and KCl showed the better effect of reducing crystal size, which are about of 40~ 60nm size. The crystallization curve of adding the different alkali metal salts suggested that the crystallization rate was significantly affected by the anions in the alkali metal salt besides the cations. Moreover, the crystal size likewise depended on the anion in the alkali metal salt. In addition, the BET results suggested that the nanosized ZSM 5 zeolite possessed a larger outer surface area in comparison with the microsized ZSM 5 zeolite. The thermostability of the samples was determined by TG DSC technique, indicating that the nanosized ZSM 5 zeolite had a poor thermostability as compared with the microsized ZSM 5 zeolite. The possible difference of the samples with different crystal sizes on IR spectra was also given.展开更多
分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇...分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇的烷基化反应性能的影响。结果表明,盐酸、柠檬酸与草酸均可脱除分子筛的骨架铝和非骨架铝,但3种酸对分子筛的脱铝程度不同。纳米ZSM-5分子筛经酸脱铝后,在脱除了部分强酸中心的同时产生了一定比例的二次介孔,有效地改善了反应物和产物的扩散性能,使催化萘与甲醇的烷基化反应的萘转化率、2,6-二甲基萘(2,6-DMN)选择性和产物中n(2,6-DMN)/n(2,7-DMN)均有不同程度的提高,并且表现出更强的抗失活能力。展开更多
基金supported by the National Natural Science Foundation of China(Nos.21276067 and 21676074)Programs of International S&T cooperation(No.2014DFR41110)
文摘Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.
文摘Nanosized ZSM 5 zeolite was synthesized by hydrothermal method and characterized by XRD and TEM techniques. The specific heat of the nanosized ZSM 5 zeolite was measured in the temperature range from 79 to 370 K, and its enhancement in specific heat was observed as compared with the corresponding microsized zeolite, indicating that the nanosized ZSM 5 zeolite possesses higher surface activity. The thermostability of the samples was determined by differential scanning calorimetric (DSC) and thermogravimetric (TG) techniques. The DSC results showed that, for the nanosized ZSM 5, a broad exothermic peak is observed from 1?300 K; for the microsized ZSM 5, the corresponding exothermic peak begins at 1?400 K, and a distinct phase transition can be observed at 1?620 K. The TG results showed that, for the nanozised ZSM 5, the maximum mass loss ratio is 6 9%, and two mass loss stages can be observed in the temperature ranges of 298~663 K and 923~ 1?273 K, respectively; for the microsized ZSM 5, the maximum mass loss ratio is 6 5% and it is more stable than the nanosized ZSM 5.
文摘Effect of different alkali metal salts on the crystal size and the crystallization rate of ZSM 5 zeolite was detailedly investigated in this paper. The samples prepared by adding the different alkali metal salts were characterized by using XRD, TEM, TG DSC, BET and IR techniques. The XRD results showed that, for the nanosized ZSM 5 zeolite, the characteristic peaks broadened on the XRD patterns in comparison with the microsized ZSM 5 zeolite. The SEM results verified that the crystal size of zeolites prepared by adding different alkali metal salts had different results, and adding NaCl, NaC2H3O2 and KCl showed the better effect of reducing crystal size, which are about of 40~ 60nm size. The crystallization curve of adding the different alkali metal salts suggested that the crystallization rate was significantly affected by the anions in the alkali metal salt besides the cations. Moreover, the crystal size likewise depended on the anion in the alkali metal salt. In addition, the BET results suggested that the nanosized ZSM 5 zeolite possessed a larger outer surface area in comparison with the microsized ZSM 5 zeolite. The thermostability of the samples was determined by TG DSC technique, indicating that the nanosized ZSM 5 zeolite had a poor thermostability as compared with the microsized ZSM 5 zeolite. The possible difference of the samples with different crystal sizes on IR spectra was also given.
文摘分别采用盐酸、草酸、柠檬酸对晶种引导的无模板剂合成的纳米ZSM-5分子筛进行脱铝改性,利用XRD、N2吸附-脱附、27 Al NMR、XRF、NH3-TPD、Py-IR等方法对其进行表征,并考察了不同种类的酸脱铝对ZSM-5分子筛的结构、酸性及其催化萘与甲醇的烷基化反应性能的影响。结果表明,盐酸、柠檬酸与草酸均可脱除分子筛的骨架铝和非骨架铝,但3种酸对分子筛的脱铝程度不同。纳米ZSM-5分子筛经酸脱铝后,在脱除了部分强酸中心的同时产生了一定比例的二次介孔,有效地改善了反应物和产物的扩散性能,使催化萘与甲醇的烷基化反应的萘转化率、2,6-二甲基萘(2,6-DMN)选择性和产物中n(2,6-DMN)/n(2,7-DMN)均有不同程度的提高,并且表现出更强的抗失活能力。