期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM
1
作者 Huawen Huang Ran Bi +4 位作者 Jie Cui Ming-Ming Hu Li Tian Xianfeng Yang Lei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期405-418,I0009,共15页
Alloyed based anode materials with high theoretical specific capacity and low reaction potential are considered to be highly potential high-energy density anode materials for alkali metal ion batteries(AMIBs).Thus,the... Alloyed based anode materials with high theoretical specific capacity and low reaction potential are considered to be highly potential high-energy density anode materials for alkali metal ion batteries(AMIBs).Thus,the design of alloyed based materials with high electrochemical performance has attracted great attention.Among the numerous characterization methods for guiding electrode materials design,in situ transmission electron microscopy(TEM)gradually plays an irreplaceable role due to its high temporal and spatial resolution in directly observing the change of morphology,crystal structure and element evolutions.Herein,we reviewed the two current research hotspots and mainly focused on the structure design of alloyed based electrode material under the guidance of in situ TEM.Specifically,various nanostructure designs of alloyed based electrode materials with guidance of in situ TEM were employed to solve the key scientific issues of the violent volume change during alloying/dealloying processes for enhanced electrochemical performances.Mainly through introducing buffer space in the electrode material to reduce volume change to improve structural stability,including porous structure(0 D),nanotube structure(1 D),simple hollow structure,yolk-shell structure and some hybrid hollow structures(3 D).Furthermore,the direct guidance of in situ TEM is expected for creating new opportunities to nextgeneration electrode material design for AMIBs. 展开更多
关键词 In situ TEM Alloyed based anode nanostructure design Alkali metal ion batteries
下载PDF
Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions 被引量:1
2
作者 田毅 王汉夫 +6 位作者 闫兰琴 张先锋 Attia Falak 陈佩佩 董凤良 孙连峰 禇卫国 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期497-506,共10页
The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three... The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material. 展开更多
关键词 surface-enhanced Raman scattering Ag-Au composite layer nanostructure design trace Hg ions detection
下载PDF
Design of a barcode-like waveguide nanostructure for efficient chip-fiber coupling 被引量:2
3
作者 Xiang Wen Ke Xu Qinghai Song 《Photonics Research》 SCIE EI 2016年第6期209-213,共5页
A barcode-like waveguide nanostructure with discretized multilevel pixel lines is designed and optimized by a nonlinear search algorithm. We obtain the design of a one-dimensional multilevel nanostructure with-1.04 d ... A barcode-like waveguide nanostructure with discretized multilevel pixel lines is designed and optimized by a nonlinear search algorithm. We obtain the design of a one-dimensional multilevel nanostructure with-1.04 d B efficiency for surface normal coupling to a standard single-mode fiber. Another design is achieved from the automatic optimization process, which enables polarization-independent coupling to a single-mode fiber. The optimum coupling efficiency is simulated to be-2.83 dB for TE and-3.49 for TM polarization centered near the 1550 nm wavelength. Polarization-dependent loss of less than 1 dB over 45.3 nm is achieved. 展开更多
关键词 TE TM design of a barcode-like waveguide nanostructure for efficient chip-fiber coupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部