Objective: This work compares the occlusive effect and the penetration enhancement ability of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), through in vitro skin. Methods: SLN and NLC were p...Objective: This work compares the occlusive effect and the penetration enhancement ability of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), through in vitro skin. Methods: SLN and NLC were prepared by high shear homogenization and characterized by size, polydispersity index, zeta potential, morphology and physical stability. Occlusive effect was assessed by an in vitro test and by measuring TEWL using pig skin. Skin treated with the lipid carriers was visualized by SEM. A penetration test through skin, followed by tape stripping, was carried out using Nile red as a marker. Results: SLN (200 ± 6 nm) and NLC (192 ± 11 nm) were obtained. An occlusion factor of 36% - 39% was observed for both systems, while a reduction in TEWL of 34.3% ± 14.8% and 26.2% ± 6.5% was seen after treatment with SLN and NLC, respectively. SEM images showed a film formed by the lipid carriers, responsible for the occlusion observed. No differences were found between the occlusive effect produced by SLN and NLC in both tests. NLC allowed the penetration of a greater amount of Nile red than SLN: 4.7 ± 1.3 μg and 1.7 ± 0.4 μg, respectively. Conclusion: Both carriers form a film on the skin, providing an occlusive effect with no differences between these two systems. The penetration of a marker (Nile red) into the stratum corneum was quite higher for NLC than for SLN, suggesting an influence of the composition of these particles on their penetration enhancing ability.展开更多
Amphotericin B (Am B), a polyene antibiotic, is one of the gold standards for the treatment of systemic fungal infections and leishmaniasis. Nowadays, only intravenous administration of Am B has been available;because...Amphotericin B (Am B), a polyene antibiotic, is one of the gold standards for the treatment of systemic fungal infections and leishmaniasis. Nowadays, only intravenous administration of Am B has been available;because Am B is poorly absorbed from the gastrointestinal (GI) tract due to its low aqueous solubility. Currently, 2 forms of Am B are available.展开更多
Topical administration is the most common and acceptable use for the treatment of ocular disease.However,the major problem of ocular drug delivery is the rapid drug elimination from the pre-ocular area leading to poor...Topical administration is the most common and acceptable use for the treatment of ocular disease.However,the major problem of ocular drug delivery is the rapid drug elimination from the pre-ocular area leading to poor ocular bioavailability[1].Nanostructure lipid carriers(NLC)possess a significant enhancement in ocular bioavailability by increasing the permeability and mucoadhesive property[2].In this study,indomethacin(IND),non-steroidal anti-inflammatory,was used as a model drug[3].展开更多
The conversion of aqueous dispersion of nanostructured lipid carriers(NLCs) into dry powder by spray drying could be a useful approach to render NLCs with better physical chemical stability than the aqueous dispersion...The conversion of aqueous dispersion of nanostructured lipid carriers(NLCs) into dry powder by spray drying could be a useful approach to render NLCs with better physical chemical stability than the aqueous dispersion. In this study, aqueous NLC dispersion containing fenofibrate was converted into dry, easily reconstitutable powder using spray drying. A central composite face centered design(CCFD) was used to investigate the influence of the ratio of lipid to protectant(mannitol and trehalose) and crystallinity of spray-dried powder on the particle size, yield and residual moisture content of the dried powder. A linear relationship(R2= 0.9915) was established between the crystalline content of the spray-dried powders against the ratio of mannitol to trehalose from 3:7 to 10:0(w/w). Spray drying of NLC aqueous dispersion using a mannitol and trehalose mixture resulted in an increase in particle size of the NLCs after reconstitution in water as compared to that in the initial aqueous dispersion. The decrease in crystallinity of the dry powder by reducing the ratio of mannitol to trehalose could improve the reconstitution of the NLCs in water. However the yield and residual moisture content of dry powder decreased with an increase in the ratio of mannitol to trehalose. Lipid nanoparticles were able to retain the drug incorporation and the prolonged drug release profile after spray drying. The experimental model was robust, and suggested that spray drying is a viable technique for the conversion of NLCs into dry powder.展开更多
The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier(NLC) drug delivery platform. An ophthalmic antiinflammatory drug, baicalin(BN) was cho...The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier(NLC) drug delivery platform. An ophthalmic antiinflammatory drug, baicalin(BN) was chosen as the model drug. BN –NLC was prepared using melt-emulsification combined with ultra-sonication technique. Additionally, a dual pH-and thermo-sensitive hydrogel composed of carboxymethyl chitosan(CMCS) and poloxamer 407(F127) was fabricated by a cross-linking reaction with a nontoxic crosslinker genipin(GP). GP-CMCS/F127 hydrogel was characterized by FTIR, NMR, XRD and SEM. The swelling studies showed GP-CMCS/F127 hydrogel was both pH-and thermo-sensitive. The results of in vitro release suggested BN –NLC gel can prolong the release of baicalin comparing with BN eye drops and BN –NLC. Ex vivo cornea permeation study was evaluated using Franz diffusion cells. The apparent permeability coefficient(Papp) of BN –NLC gel was much higher(4.46-fold) than that of BN eye drops. Through the determination of corneal hydration levels, BN –NLC gel was confirmed that had no significant irritation to cornea. Ex vivo precorneal retention experiments were carried out by a flow-through approach. The results indicated that the NLC-based hydrogel can prolong precorneal residence time. In conclusion, the hybrid NLCbased hydrogel has a promising potential for application in ocular drug delivery.展开更多
AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made b...AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size(PS), zeta potentials(ZP), encapsulation efficiency(EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier(NLC), genistein(Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8(CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction(RT-q PCR) and immunofluorescence analyses.·RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was-7.14 ±0.38 m V and the EE of Gen in the nanoparticles was 92.3% ±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72 h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The m RNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group.·CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.展开更多
The purpose of this study was to design an innovative topical ointment containing betamethasone dipropionate loaded nanostructured lipid carrier (BD-NLC) for the treatment of atopic dermatitis (AD). BD-loaded NLC was ...The purpose of this study was to design an innovative topical ointment containing betamethasone dipropionate loaded nanostructured lipid carrier (BD-NLC) for the treatment of atopic dermatitis (AD). BD-loaded NLC was produced with precirol ATO 5 and oleic oil (OA) by melt emulsification method. Effects of surfactant concentration, amount of solid lipid and liquid lipid on skin retention and skin penetration were investigated by in vitro percutaneous permeation experiment. The optimized BD-NLC showed a homogeneous particle size of 169.1 nm (with PI = 0.195), negatively charged surface (-23.4 mV) and high encapsulation efficiency (85%). Particle morphology assessed by TEM revealed a spherical shape. In vitro skin permeation study was carried out to investigate the percutaneous behaviors of W/O ointment with BD-NLC and Carbopol emulgel ointment with BD-NLC. W/O ointment with BDNLC showed high skin retention (35.43 μg/g) and low penetration (0.87 μg/ml). In vitro drug release studies were carried out to demonstrate the drug releasing properties of the two ointments. W/O ointment with BD-NLC showed an advantage for skin retention as it was better for drug release. The tissue distribution test suggested that BD distribution was skin > muscle > blood. Self-made topical ointment in mice showed no skin irritation. The animal experiments indicated that BD-loaded NLC ointment was effective and safe for topical use.展开更多
A simple and fast capillary electrophoresis method has been developed to determine the amount of piroxicam loaded in a drug delivery system based on nanostructured lipid carriers(NLCs).The entrapment efficiency of t...A simple and fast capillary electrophoresis method has been developed to determine the amount of piroxicam loaded in a drug delivery system based on nanostructured lipid carriers(NLCs).The entrapment efficiency of the nanostructured lipid carrier was estimated by measuring the concentration of drug not entrapped in a suspension of NLC.The influence of different parameters on migration times,peak symmetry,efficiency and resolution was studied;these parameters included the pH of the electrophoretic buffer solution and the applied voltage.The piroxicam peak was obtained with a satisfactory resolution.The separation was carried out using a running buffer composed of 50 mM ammonium acetate and 13.75 mM ammonia at pH 9.The optimal voltage was 20 kV and the cartridge temperature was 20 ℃.The corresponding calibration curve was linear over the range of 2.7-5.4 μg/mL of NLC suspension.The reproducibility of migration time and peak area were investigated,and the obtained RSD%values(n = 5) were 0.99 and 2.13.respectively.展开更多
A new photoprotective system based on encapsulating UVA (butyl methoxydibenzoylmethane, BMBM) and UVB (octyl methoxycinnamate, OMC) filters into nanostructured lipid carriers (NLC) has been prepared to develop cosmeti...A new photoprotective system based on encapsulating UVA (butyl methoxydibenzoylmethane, BMBM) and UVB (octyl methoxycinnamate, OMC) filters into nanostructured lipid carriers (NLC) has been prepared to develop cosmetic formulations with effective UV protection. BMBM/OMC-loaded NLC was prepared by ultrasonication-homogenisation, and analysed by particle size, zeta potential (ZP), encapsulation efficiency (EE), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, the UV protection property and photostability were investigated and compared with BMBM/OMC-conventional emulsions. The particle size and ZP of BMBM/OMC-loaded NLC were 310.24 nm and -33.6 mV, EE of BMBM and OMC were 85.46% and 99.32%. SEM, FTIR and DSC analysis confirmed BMBM and OMC entrapped in the lipid matrix core and the structure was stable during storage. Compared with conventional emulsion, BMBM/OMC-loaded NLC displayed perfect photo protection property in whole UV range. The photostability studies showed that the NLC can improve the photostability of sunscreens.展开更多
Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and suscepti...Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and susceptibility to oxidation and discoloration restrict its practical application in the cosmetics industry.In order to enhance stability and performance characteristics,a whitening nanostructured lipid carrier(NLC)was synthesized through high-pressure homogenization.This method entailed the incorporation of solid lipids,a liquid lipid,and a compound emulsifier,with deionized water fulfilling the roles of solid phase,liquid phase,and water phase,respectively.The NLC's particle size,Zeta potential,stability,encapsulation efficiency,and other parameters were assessed using techniques such as particle sizer,stability analyzer,and HPLC.The results showed that the NLC for phenylethyl resorcinol prepared by using the optimal formula(7.50%solid lipids,3.00%ethylhexyl palmitate,and 2.00%Tween 80 and soybean lecithin)has an encapsulation efficiency of 87.11%,a particle size of 157.2±0.70 nm,a kinetic instability of less than 1.2,and a greatly improved stability,thereby successfully solving the problems of unstable storage and poor solubility of phenylethyl resorcinol.展开更多
Artemisinin(ART) is a widely used active drug for malaria, including severe and cerebral malaria. However, its therapeutic efficacy is affected by its lower bioavailability. In the present study, nanostructured lipi...Artemisinin(ART) is a widely used active drug for malaria, including severe and cerebral malaria. However, its therapeutic efficacy is affected by its lower bioavailability. In the present study, nanostructured lipid carriers(NLCs) were proposed as carrier of ART to improve pharmacokinetic properties of the drug. ART-NLC was prepared by high-pressure homogenization based on orthogonal design. The particle size, zeta potential, encapsulation efficiency(EE) and percentage of drug loading(DL) of ART-NLC were(53.06±2.11) nm,(–28.7±3.59) m V, 73.9%±0.5% and 11.23%±0.37%, respectively. ART-NLC showed the sustained release characteristics and scarcely the hemolysis effect on human red blood cells. The pharmacokinetics of ART-NLC for rats after tail intravenous injection(i.v) or intraperitoneal injection(i.p) were investigated by liquid chromatography-tandem mass spectroscopy(LC-MS/MS). And ART solution was designed as control preparation. For rats of i.v groups, the AUC0–∞((707.45±145.65) ng·h/m L) of ART-NLC were significantly bigger than that of ART((368.98±139.58) ng·h/m L). The MRT((3.38±0.46) h) of ART-NLC was longer than that of ART((1.39±0.61) h). And similar results were observed for rats of i.p groups. The AUC0–∞((1233.06±235.57) ng·h/m L) and MRT((4.97±0.69) h) of ART-NLC were both bigger than those of ART, which were(871.17±234.03) ng·h/m L) and(1.75±0.31) h), respectively. Compared with ART, ART-NLC showed a significant increase in AUC0–∞(P〈0.05) and MRT(P〈0.001) for both i.p and tail i.v administrations.展开更多
Surface modification may have important influences on the penetration behavior of nanoscale drug delivery system. In the present study, we mainly focused on whether cell targeting or cell penetration could affect pene...Surface modification may have important influences on the penetration behavior of nanoscale drug delivery system. In the present study, we mainly focused on whether cell targeting or cell penetration could affect penetration abilities of nanostructured lipid carriers(NLC). Real--time penetration of folate--or cell penetrating peptide(CPP)-modified NLC was evaluated using a multicellular tumor spheroid(MTS) established by stacking culture method as an in vitro testing platform. The results suggested that CPP modification had a better penetration behavior both on penetration depth and intensity compared with folate-modified NLC at the early stage of penetration process.展开更多
The management of the central nervous system(CNS)disorders is challenging,due to the need of drugs to cross the blood-brain barrier(BBB)and reach the brain.Among the various strategies that have been studied to circum...The management of the central nervous system(CNS)disorders is challenging,due to the need of drugs to cross the blood-brain barrier(BBB)and reach the brain.Among the various strategies that have been studied to circumvent this challenge,the use of the intranasal route to transport drugs from the nose directly to the brain has been showing promising results.In addition,the encapsulation of the drugs in lipid-based nanocarriers,such as solid lipid nanoparticles(SLNs),nanostructured lipid carriers(NLCs)or nanoemulsions(NEs),can improve nose-to-brain transport by increasing the bioavailability and site-specifc delivery.This review provides the state-of-the-art of in vivo studies with lipid-based nanocarriers(SLNs,NLCs and NEs)for nose-to-brain delivery.Based on the literature available from the past two years,we present an insight into the different mechanisms that drugs can follow to reach the brain after intranasal administration.The results of pharmacokinetic and pharmacodynamics studies are reported and a critical analysis of the differences between the anatomy of the nasal cavity of the different animal species used in in vivo studies is carried out.Although the exact mechanism of drug transport from the nose to the brain is not fully understood and its effectiveness in humans is unclear,it appears that the intranasal route together with the use of NLCs,SLNs or NEs is advantageous for targeting drugs to the brain.These systems have been shown to be more effective for nose-to-brain delivery than other routes or formulations with non-encapsulated drugs,so they are expected to be approved by regulatory authorities in the coming years.展开更多
The objective of this study was to prepare nanostructured lipid carrier(NLC)-based topical gel of Ganoderma Triterpenoids(GTs) and evaluate their effects on frostbite treatment. GT-NLCs was prepared by the high pressu...The objective of this study was to prepare nanostructured lipid carrier(NLC)-based topical gel of Ganoderma Triterpenoids(GTs) and evaluate their effects on frostbite treatment. GT-NLCs was prepared by the high pressure homogenization method and then characterized by morphology and analyses of particle size, zeta potential, entrapment efficiency(EE), and drug loading(DL). The NLCs was suitably gelled for skin permeation studies in vitro and pharmacodynamic evaluation in vivo, compared with the GT emulgel. The GT-NLC remained within the colloidal range and was uniformly dispersed after suitably gelled by carbopol preparation. Transmission electron microscopy(TEM) study showed GT-NLCs was spherical in shape. The EE(%) and DL(%) could reach up to(81.84 ± 0.60)% and(2.13 ± 0.12)%, respectively. The result of X-ray diffractograms(XRD) showed that GTs were in an amorphous state in the NLC-gel. In vitro permeation studies through rat skin indicated that the amount of GTs permeated through skin of GT-NLCs after 24 h was higher than that of GT emulsion, and GT-NLCs increased the accumulative amounts of GTs in epidermis 7.76 times greater than GT emulsion. GT-NLC-gel was found to possess superior therapeutic effect for frostbite, compared with the GT emulgel. The NLC based topical gel of GTs could improve-their therapeutic effect for frostbite.展开更多
In this study,ascorbyl palmitate(AP)incorporated in nanostructured lipid carriers(NLCs-AP)was fabricated using the hot-homogenization method.The amounts of AP,Tween 80,glyceryl stearate,and oleic acid were optimized b...In this study,ascorbyl palmitate(AP)incorporated in nanostructured lipid carriers(NLCs-AP)was fabricated using the hot-homogenization method.The amounts of AP,Tween 80,glyceryl stearate,and oleic acid were optimized by Box-Behnken Design(BBD)to obtain a high percentage of encapsulation efficiency and loading efficiency.Then,the optimum NLCs-AP,free-AP with rosemary essential oil(REO),NLCs-AP with REO,and tert-Butylhydroquinone(TBHQ)at a concentration of 75 ppm were added to camelina oil.Then peroxide value(PV),anisidine value(AV),TOTOX value(TV),oxidative stability using Rancimat,total phenol content(TPC),and antioxidant activity in camelina oil samples were evaluated during 90 days of storage at the ambient temper-ature.The optimum NLCs-AP had a particle size of 133.4 nm and a PDI of 0.29.The transmission electron microscopy(TEM)showed a spherical and smooth surface of the optimum NLCs-AP.The results of differential scanning calorimetry(DSC)and Fourier transfer spectroscopy infrared(FTIR)analyses implied that there was no interaction between AP and NLCs.The Korsmeyer-Peppas model was the best model for the evaluation of the release kinetics.The amounts of PV,AV,and TV of camelina oil containing the optimum NLCs-AP were slightly higher than the oil containing TBHQ.The highest oxidative protection,TPC,and antioxidant activity percentage were achieved in camelina oil containing NLCs-AP with REO.Conclusively,the optimum NLCs-AP had excellent potential for encapsulation of AP,and the mixture of REO and NLCs-AP could be applied for giving suitable oxidative stability in camelina oil.展开更多
文摘Objective: This work compares the occlusive effect and the penetration enhancement ability of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), through in vitro skin. Methods: SLN and NLC were prepared by high shear homogenization and characterized by size, polydispersity index, zeta potential, morphology and physical stability. Occlusive effect was assessed by an in vitro test and by measuring TEWL using pig skin. Skin treated with the lipid carriers was visualized by SEM. A penetration test through skin, followed by tape stripping, was carried out using Nile red as a marker. Results: SLN (200 ± 6 nm) and NLC (192 ± 11 nm) were obtained. An occlusion factor of 36% - 39% was observed for both systems, while a reduction in TEWL of 34.3% ± 14.8% and 26.2% ± 6.5% was seen after treatment with SLN and NLC, respectively. SEM images showed a film formed by the lipid carriers, responsible for the occlusion observed. No differences were found between the occlusive effect produced by SLN and NLC in both tests. NLC allowed the penetration of a greater amount of Nile red than SLN: 4.7 ± 1.3 μg and 1.7 ± 0.4 μg, respectively. Conclusion: Both carriers form a film on the skin, providing an occlusive effect with no differences between these two systems. The penetration of a marker (Nile red) into the stratum corneum was quite higher for NLC than for SLN, suggesting an influence of the composition of these particles on their penetration enhancing ability.
文摘Amphotericin B (Am B), a polyene antibiotic, is one of the gold standards for the treatment of systemic fungal infections and leishmaniasis. Nowadays, only intravenous administration of Am B has been available;because Am B is poorly absorbed from the gastrointestinal (GI) tract due to its low aqueous solubility. Currently, 2 forms of Am B are available.
文摘Topical administration is the most common and acceptable use for the treatment of ocular disease.However,the major problem of ocular drug delivery is the rapid drug elimination from the pre-ocular area leading to poor ocular bioavailability[1].Nanostructure lipid carriers(NLC)possess a significant enhancement in ocular bioavailability by increasing the permeability and mucoadhesive property[2].In this study,indomethacin(IND),non-steroidal anti-inflammatory,was used as a model drug[3].
基金the Lundbeck Foundation(Denmark)(grant No.R49-A5604the National Nature Science Foundation of China(No.81573380).
文摘The conversion of aqueous dispersion of nanostructured lipid carriers(NLCs) into dry powder by spray drying could be a useful approach to render NLCs with better physical chemical stability than the aqueous dispersion. In this study, aqueous NLC dispersion containing fenofibrate was converted into dry, easily reconstitutable powder using spray drying. A central composite face centered design(CCFD) was used to investigate the influence of the ratio of lipid to protectant(mannitol and trehalose) and crystallinity of spray-dried powder on the particle size, yield and residual moisture content of the dried powder. A linear relationship(R2= 0.9915) was established between the crystalline content of the spray-dried powders against the ratio of mannitol to trehalose from 3:7 to 10:0(w/w). Spray drying of NLC aqueous dispersion using a mannitol and trehalose mixture resulted in an increase in particle size of the NLCs after reconstitution in water as compared to that in the initial aqueous dispersion. The decrease in crystallinity of the dry powder by reducing the ratio of mannitol to trehalose could improve the reconstitution of the NLCs in water. However the yield and residual moisture content of dry powder decreased with an increase in the ratio of mannitol to trehalose. Lipid nanoparticles were able to retain the drug incorporation and the prolonged drug release profile after spray drying. The experimental model was robust, and suggested that spray drying is a viable technique for the conversion of NLCs into dry powder.
基金National Natural Science Foundation of China (projects 81473163 and 81773670) for supporting the research
文摘The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier(NLC) drug delivery platform. An ophthalmic antiinflammatory drug, baicalin(BN) was chosen as the model drug. BN –NLC was prepared using melt-emulsification combined with ultra-sonication technique. Additionally, a dual pH-and thermo-sensitive hydrogel composed of carboxymethyl chitosan(CMCS) and poloxamer 407(F127) was fabricated by a cross-linking reaction with a nontoxic crosslinker genipin(GP). GP-CMCS/F127 hydrogel was characterized by FTIR, NMR, XRD and SEM. The swelling studies showed GP-CMCS/F127 hydrogel was both pH-and thermo-sensitive. The results of in vitro release suggested BN –NLC gel can prolong the release of baicalin comparing with BN eye drops and BN –NLC. Ex vivo cornea permeation study was evaluated using Franz diffusion cells. The apparent permeability coefficient(Papp) of BN –NLC gel was much higher(4.46-fold) than that of BN eye drops. Through the determination of corneal hydration levels, BN –NLC gel was confirmed that had no significant irritation to cornea. Ex vivo precorneal retention experiments were carried out by a flow-through approach. The results indicated that the NLC-based hydrogel can prolong precorneal residence time. In conclusion, the hybrid NLCbased hydrogel has a promising potential for application in ocular drug delivery.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No. 81100654)
文摘AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size(PS), zeta potentials(ZP), encapsulation efficiency(EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier(NLC), genistein(Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8(CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction(RT-q PCR) and immunofluorescence analyses.·RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was-7.14 ±0.38 m V and the EE of Gen in the nanoparticles was 92.3% ±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72 h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The m RNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group.·CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.
文摘The purpose of this study was to design an innovative topical ointment containing betamethasone dipropionate loaded nanostructured lipid carrier (BD-NLC) for the treatment of atopic dermatitis (AD). BD-loaded NLC was produced with precirol ATO 5 and oleic oil (OA) by melt emulsification method. Effects of surfactant concentration, amount of solid lipid and liquid lipid on skin retention and skin penetration were investigated by in vitro percutaneous permeation experiment. The optimized BD-NLC showed a homogeneous particle size of 169.1 nm (with PI = 0.195), negatively charged surface (-23.4 mV) and high encapsulation efficiency (85%). Particle morphology assessed by TEM revealed a spherical shape. In vitro skin permeation study was carried out to investigate the percutaneous behaviors of W/O ointment with BD-NLC and Carbopol emulgel ointment with BD-NLC. W/O ointment with BDNLC showed high skin retention (35.43 μg/g) and low penetration (0.87 μg/ml). In vitro drug release studies were carried out to demonstrate the drug releasing properties of the two ointments. W/O ointment with BD-NLC showed an advantage for skin retention as it was better for drug release. The tissue distribution test suggested that BD distribution was skin > muscle > blood. Self-made topical ointment in mice showed no skin irritation. The animal experiments indicated that BD-loaded NLC ointment was effective and safe for topical use.
基金financial support of Universidad Nacional del Sur(24/Q054)Consejo Nacional de Investigaciones Cientificas y Tecnicas(CONICET)
文摘A simple and fast capillary electrophoresis method has been developed to determine the amount of piroxicam loaded in a drug delivery system based on nanostructured lipid carriers(NLCs).The entrapment efficiency of the nanostructured lipid carrier was estimated by measuring the concentration of drug not entrapped in a suspension of NLC.The influence of different parameters on migration times,peak symmetry,efficiency and resolution was studied;these parameters included the pH of the electrophoretic buffer solution and the applied voltage.The piroxicam peak was obtained with a satisfactory resolution.The separation was carried out using a running buffer composed of 50 mM ammonium acetate and 13.75 mM ammonia at pH 9.The optimal voltage was 20 kV and the cartridge temperature was 20 ℃.The corresponding calibration curve was linear over the range of 2.7-5.4 μg/mL of NLC suspension.The reproducibility of migration time and peak area were investigated,and the obtained RSD%values(n = 5) were 0.99 and 2.13.respectively.
基金supported by Base Construction Program of Shanghai Institute of Technology:Breeding of new variety and Highyield Cultivation Technique of Fragrant Plants (3921NH166035)
文摘A new photoprotective system based on encapsulating UVA (butyl methoxydibenzoylmethane, BMBM) and UVB (octyl methoxycinnamate, OMC) filters into nanostructured lipid carriers (NLC) has been prepared to develop cosmetic formulations with effective UV protection. BMBM/OMC-loaded NLC was prepared by ultrasonication-homogenisation, and analysed by particle size, zeta potential (ZP), encapsulation efficiency (EE), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, the UV protection property and photostability were investigated and compared with BMBM/OMC-conventional emulsions. The particle size and ZP of BMBM/OMC-loaded NLC were 310.24 nm and -33.6 mV, EE of BMBM and OMC were 85.46% and 99.32%. SEM, FTIR and DSC analysis confirmed BMBM and OMC entrapped in the lipid matrix core and the structure was stable during storage. Compared with conventional emulsion, BMBM/OMC-loaded NLC displayed perfect photo protection property in whole UV range. The photostability studies showed that the NLC can improve the photostability of sunscreens.
基金supported by the Guangdong Industry Polytechnic University Student Research Project[grant numbers XSKYL202317]Guangdong Provincial Key Laboratory of Green Chemical Product Technology Open Project[grant numbers GC202117].
文摘Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and susceptibility to oxidation and discoloration restrict its practical application in the cosmetics industry.In order to enhance stability and performance characteristics,a whitening nanostructured lipid carrier(NLC)was synthesized through high-pressure homogenization.This method entailed the incorporation of solid lipids,a liquid lipid,and a compound emulsifier,with deionized water fulfilling the roles of solid phase,liquid phase,and water phase,respectively.The NLC's particle size,Zeta potential,stability,encapsulation efficiency,and other parameters were assessed using techniques such as particle sizer,stability analyzer,and HPLC.The results showed that the NLC for phenylethyl resorcinol prepared by using the optimal formula(7.50%solid lipids,3.00%ethylhexyl palmitate,and 2.00%Tween 80 and soybean lecithin)has an encapsulation efficiency of 87.11%,a particle size of 157.2±0.70 nm,a kinetic instability of less than 1.2,and a greatly improved stability,thereby successfully solving the problems of unstable storage and poor solubility of phenylethyl resorcinol.
基金National Natural Science Foundation of China(Grant No.81373364)The Subject clots Project Serving Pharmaceutical Industrial Innovation of Shanxi Province
文摘Artemisinin(ART) is a widely used active drug for malaria, including severe and cerebral malaria. However, its therapeutic efficacy is affected by its lower bioavailability. In the present study, nanostructured lipid carriers(NLCs) were proposed as carrier of ART to improve pharmacokinetic properties of the drug. ART-NLC was prepared by high-pressure homogenization based on orthogonal design. The particle size, zeta potential, encapsulation efficiency(EE) and percentage of drug loading(DL) of ART-NLC were(53.06±2.11) nm,(–28.7±3.59) m V, 73.9%±0.5% and 11.23%±0.37%, respectively. ART-NLC showed the sustained release characteristics and scarcely the hemolysis effect on human red blood cells. The pharmacokinetics of ART-NLC for rats after tail intravenous injection(i.v) or intraperitoneal injection(i.p) were investigated by liquid chromatography-tandem mass spectroscopy(LC-MS/MS). And ART solution was designed as control preparation. For rats of i.v groups, the AUC0–∞((707.45±145.65) ng·h/m L) of ART-NLC were significantly bigger than that of ART((368.98±139.58) ng·h/m L). The MRT((3.38±0.46) h) of ART-NLC was longer than that of ART((1.39±0.61) h). And similar results were observed for rats of i.p groups. The AUC0–∞((1233.06±235.57) ng·h/m L) and MRT((4.97±0.69) h) of ART-NLC were both bigger than those of ART, which were(871.17±234.03) ng·h/m L) and(1.75±0.31) h), respectively. Compared with ART, ART-NLC showed a significant increase in AUC0–∞(P〈0.05) and MRT(P〈0.001) for both i.p and tail i.v administrations.
基金National key Basic Research Program(Grant No.2013CB932501)National Natural Science Foundation of China(Grant No.81273454 and 81473156)+1 种基金Beijing National Science Foundation(Grant No.7132113)Doctoral Foundation of the Ministry of Education(Grant No.20130001110055)
文摘Surface modification may have important influences on the penetration behavior of nanoscale drug delivery system. In the present study, we mainly focused on whether cell targeting or cell penetration could affect penetration abilities of nanostructured lipid carriers(NLC). Real--time penetration of folate--or cell penetrating peptide(CPP)-modified NLC was evaluated using a multicellular tumor spheroid(MTS) established by stacking culture method as an in vitro testing platform. The results suggested that CPP modification had a better penetration behavior both on penetration depth and intensity compared with folate-modified NLC at the early stage of penetration process.
基金supported by Fundacao para a Ciência e a Tecnologia(FCT)(SFRH/136177/2018,Portugal)the Applied Molecular Biosciences Unit-UCIBIO which is fnanced by national funds from FCT(UIDP/04378/2020 and UIDB/04378/2020)。
文摘The management of the central nervous system(CNS)disorders is challenging,due to the need of drugs to cross the blood-brain barrier(BBB)and reach the brain.Among the various strategies that have been studied to circumvent this challenge,the use of the intranasal route to transport drugs from the nose directly to the brain has been showing promising results.In addition,the encapsulation of the drugs in lipid-based nanocarriers,such as solid lipid nanoparticles(SLNs),nanostructured lipid carriers(NLCs)or nanoemulsions(NEs),can improve nose-to-brain transport by increasing the bioavailability and site-specifc delivery.This review provides the state-of-the-art of in vivo studies with lipid-based nanocarriers(SLNs,NLCs and NEs)for nose-to-brain delivery.Based on the literature available from the past two years,we present an insight into the different mechanisms that drugs can follow to reach the brain after intranasal administration.The results of pharmacokinetic and pharmacodynamics studies are reported and a critical analysis of the differences between the anatomy of the nasal cavity of the different animal species used in in vivo studies is carried out.Although the exact mechanism of drug transport from the nose to the brain is not fully understood and its effectiveness in humans is unclear,it appears that the intranasal route together with the use of NLCs,SLNs or NEs is advantageous for targeting drugs to the brain.These systems have been shown to be more effective for nose-to-brain delivery than other routes or formulations with non-encapsulated drugs,so they are expected to be approved by regulatory authorities in the coming years.
基金supported by Beijing Natural Science Foundation of China(No.7122176)National Natural Science Foundation of China(No.81102821)National Key New Drugs Innovation Foundation(Nos.2014ZX09J14106-01A and CWS11J165)
文摘The objective of this study was to prepare nanostructured lipid carrier(NLC)-based topical gel of Ganoderma Triterpenoids(GTs) and evaluate their effects on frostbite treatment. GT-NLCs was prepared by the high pressure homogenization method and then characterized by morphology and analyses of particle size, zeta potential, entrapment efficiency(EE), and drug loading(DL). The NLCs was suitably gelled for skin permeation studies in vitro and pharmacodynamic evaluation in vivo, compared with the GT emulgel. The GT-NLC remained within the colloidal range and was uniformly dispersed after suitably gelled by carbopol preparation. Transmission electron microscopy(TEM) study showed GT-NLCs was spherical in shape. The EE(%) and DL(%) could reach up to(81.84 ± 0.60)% and(2.13 ± 0.12)%, respectively. The result of X-ray diffractograms(XRD) showed that GTs were in an amorphous state in the NLC-gel. In vitro permeation studies through rat skin indicated that the amount of GTs permeated through skin of GT-NLCs after 24 h was higher than that of GT emulsion, and GT-NLCs increased the accumulative amounts of GTs in epidermis 7.76 times greater than GT emulsion. GT-NLC-gel was found to possess superior therapeutic effect for frostbite, compared with the GT emulgel. The NLC based topical gel of GTs could improve-their therapeutic effect for frostbite.
文摘In this study,ascorbyl palmitate(AP)incorporated in nanostructured lipid carriers(NLCs-AP)was fabricated using the hot-homogenization method.The amounts of AP,Tween 80,glyceryl stearate,and oleic acid were optimized by Box-Behnken Design(BBD)to obtain a high percentage of encapsulation efficiency and loading efficiency.Then,the optimum NLCs-AP,free-AP with rosemary essential oil(REO),NLCs-AP with REO,and tert-Butylhydroquinone(TBHQ)at a concentration of 75 ppm were added to camelina oil.Then peroxide value(PV),anisidine value(AV),TOTOX value(TV),oxidative stability using Rancimat,total phenol content(TPC),and antioxidant activity in camelina oil samples were evaluated during 90 days of storage at the ambient temper-ature.The optimum NLCs-AP had a particle size of 133.4 nm and a PDI of 0.29.The transmission electron microscopy(TEM)showed a spherical and smooth surface of the optimum NLCs-AP.The results of differential scanning calorimetry(DSC)and Fourier transfer spectroscopy infrared(FTIR)analyses implied that there was no interaction between AP and NLCs.The Korsmeyer-Peppas model was the best model for the evaluation of the release kinetics.The amounts of PV,AV,and TV of camelina oil containing the optimum NLCs-AP were slightly higher than the oil containing TBHQ.The highest oxidative protection,TPC,and antioxidant activity percentage were achieved in camelina oil containing NLCs-AP with REO.Conclusively,the optimum NLCs-AP had excellent potential for encapsulation of AP,and the mixture of REO and NLCs-AP could be applied for giving suitable oxidative stability in camelina oil.