期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams 被引量:1
1
作者 J.Shiri F.Shahi +1 位作者 M.R.Mehmannavaz L.Shahrassai 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期29-33,共5页
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt... We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation. 展开更多
关键词 Phase Control of Transient Optical properties of Double Coupled Quantum-Dot nanostructure via Gaussian Laser Beams QDs
下载PDF
Synthesis of Different TiO2 Nanostructures and Their Physical Properties
2
作者 T.Hoseinzadeh Z.Ghorannevis +2 位作者 M.Ghoranneviss M.K.Salem A.H.Sari 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期53-56,共4页
Titanium dioxide (TiO2) nanosheet, nanorod and nanotubes are synthesized using chemical vapor deposition (CVD) and anodizing processes. TiO2 nanosheets are grown on Ti foil which is coated with Au catalyst in CVD,... Titanium dioxide (TiO2) nanosheet, nanorod and nanotubes are synthesized using chemical vapor deposition (CVD) and anodizing processes. TiO2 nanosheets are grown on Ti foil which is coated with Au catalyst in CVD, TiO2 nanorods are synthesized on treated Ti foil with HCl by CVD, and TiO2 nanotubes are prepared by the three-step anodization method. Scanning electron microscopy shows the final TiO2 structures prepared using three processes with three different morphologies of nanosheet, nanorod and nanotube. X-ray diffraction verifies the presence of TiO2. TiO2 sheets and rods are crystalized in rutile phase, and TiO2 tubes after annealing turn into the anatase crystal phase. The optical investigations carried out by diffuse reflection spectroscopy reveal that the morphology of TiO2 nanostructures influencing their optical response and band gap energy of TiO2 is changed for different TiO2 nanostructures. 展开更多
关键词 XRD SEM TiO Synthesis of Different TiO2 nanostructures and Their Physical properties
下载PDF
Optical properties of several ternary nanostructures
3
作者 Xiao-Long Tang Xin-Lu Cheng +1 位作者 Hua-Liang Cao Hua-Dong Zeng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期523-529,共7页
To investigate the optical properties of the ternary nanostructures, the nanodisk, core–shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these s... To investigate the optical properties of the ternary nanostructures, the nanodisk, core–shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these structures are calculated by the discrete dipole approximation(DDA) method. The result shows that the nanodisk structure has the best extinction efficiency in the three structures. Furthermore, several three-material combinations of the nanodisk structures are investigated. The ternary nanodisk structure composed of TiO_(2) and two noble metals(Au, Ag or Pt) has higher extinction coefficient and near-field intensity than the nanodisk consisting of Au, TiO_(2) and a semiconductor(Pb Se, Ge, MoS2, CdSe, CdS or TiO_(2)).Especially, TiO_(2)/Ag/Pt has the best extinction efficiency and the max electric near-field intensity. And the extinction spectra of TiO_(2)/Ag/Pt and TiO_(2)/Ag/Au structures are complementary in the visible range. This work conduces to the further research into ternary nanostructure and provides essential information about its performance in visible range. 展开更多
关键词 optical properties of nanostructures plasmons on surfaces and interfaces model and numerical simulation
下载PDF
Structural,Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering
4
作者 R.Perumal Z.Hassan R.Saravanan 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期77-80,共4页
Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and ... Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed. 展开更多
关键词 ZnO of Structural Morphological and Electrical properties of In-Doped Zinc Oxide nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering that by were been In EDX on
下载PDF
Characterization of structural and electrical properties of ZnO tetrapods 被引量:1
5
作者 Yu-dong Gu Wen-jie Mai Peng Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期686-690,共5页
ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace.Structural characterization was carried out by transmission electron microscopy (TEM) and select-area el... ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace.Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED),which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure.The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system.The three branches of a tetrapod serve as source,drain,and "gate",respectively;while the fourth branch pointing upward works as the force trigger by vertically applying external force downward.The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure.In such situation,the electrical current through the branches of ZnO tetrapods can be tuned by external force,and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time. 展开更多
关键词 zine oxide tetrapods electrical property piezoelectric materials semiconductors nanostructures
下载PDF
Solvothermal Synthesis and Photocatalytic Performance of Bi_2S_3 Hierarchical Nanostructure
6
作者 伍水生 WANG Jun +2 位作者 JIA Qingming DAI Weili WANG Yaming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期562-567,共6页
The synthesis of Bi2S3 hierarchical nanostructure was reported by a solvothermal reaction using ethylene disulfhydrate as the sulfur source and chelating reagent. The as-synthesized samples were characterized by X-ray... The synthesis of Bi2S3 hierarchical nanostructure was reported by a solvothermal reaction using ethylene disulfhydrate as the sulfur source and chelating reagent. The as-synthesized samples were characterized by X-ray diffraction(XRD), Raman, X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM) and photoluminescence(PL). The XRD, Raman, and XPS data confirmed that the as-synthesized sample belongs to orthorhombic phase Bi2S3. The SEM observations displayed that Bi2S3 hierarchical nanostructure assembled from nanorods. A 410 nm ultraviolet photoluminescence(PL) emission of as-synthesized Bi2S3 was observed when the sample was excited with wavelength of 320-330 nm. The Bi2S3 hierarchical nanostructure also shows a significant enhancement of photocatalytic capability toward degrading methyl orange(MO) under UV light, the photodegradation of MO reaches 95% within 180 min. 展开更多
关键词 nanostructures chemical synthesis luminescence catalytic properties
下载PDF
Comparison of the effect of carbon,halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films
7
作者 Khaliq Majeed Mariam Al Ali AlMaadeed Moustafa M.Zagho 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期428-435,共8页
In this study, titania nanotubes (TNTs) were prepared by hydrothermal method with the aim to compare the properties of these one-dimensional tubular nanostructures' reinforced nanocomposites with the carbon and hal... In this study, titania nanotubes (TNTs) were prepared by hydrothermal method with the aim to compare the properties of these one-dimensional tubular nanostructures' reinforced nanocomposites with the carbon and halloysite nanotubes' (CNTs and HNTs, respectively) reinforced nanocomposites. Low density polyethylene (LDPE) was used as the matrix material. The prepared nanocomposites were characterized and compared by means of their morphological, mechanical and thermal properties. SEM results showed enhanced interracial interaction and better dispersion of TNTs and HNTs into LDPE with the incorporation of a MAPE compatibilizer, however, these interactions seem to be absent between CNTs and LDPE, and the CNTs remained agglomerated. Contact angle measurements revealed that CNT filled nanocomposites are more hydrophilic than HNT composites, and less than TNT composites. CNTs provided better tensile strength and Young's modulus than HNT and TNT nanocomposites, a 42% increase in tensile strength and Young's modulus is achieved compared to LDPE. Tear strength improvement was noticed in the TNT composites with a value of 35.4 N. mm -1, compared to CNT composites with a value of 25.5 N.mm 1 -s- 1. All the prepared nanocomposites are more thermally stable than neat LDPE and the best improvement in thermal stability was observed for CNT reinforced nanocomposites. CNTs depicted the best improvement in tensile and thermal properties and the MAPE compatibilizer effective- ness regarding morphological, mechanical and thermal properties was only observed for TNT and HNT systems. 展开更多
关键词 Hydrothermal nanostructure Nanotube Nanocomposite Mechanical properties Thermal properties
下载PDF
Layer resolved magnetization reversal study in SmCo_5 /Fe nanocomposite bilayers 被引量:2
8
作者 F.Shahzad S.A.Siddiqi +5 位作者 M.Y.Im A.Avallone P.Fischer Z.Hussain I.Siddiqi F.Hellman 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期528-532,共5页
A hard/soft SmCo5/ Fe nanocomposite magnetic bilayer system is fabricated on x-ray transparent 100-200 nm thin SiaN4 films by magnetron sputtering. The microscopic magnetic domain pattern and its behaviours during mag... A hard/soft SmCo5/ Fe nanocomposite magnetic bilayer system is fabricated on x-ray transparent 100-200 nm thin SiaN4 films by magnetron sputtering. The microscopic magnetic domain pattern and its behaviours during magnetization reversal in the hard and the soft magnetic phases are studied separately by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25 Nm. We observe that the domain patterns for the soft and hard phases show coherent behaviours in varying magnetic fields. We derive local M(H) curves from the images of Fe and SmCo5 separately and find the switches for hard and soft phases to be the same. 展开更多
关键词 MULTILAYERS x-ray microscopes magnetic properties of nanostructures
下载PDF
Relaxation of Magnetic Nanoparticle Chain without Applied Field
9
作者 HE Liang-Ming 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第3期537-540,共4页
The relaxation of a one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where a11 magnetic moments ... The relaxation of a one-dimensional magnetic nanoparticle linear chain with lattice constant a is investigated in absence of applied field. There is an equilibrium state (or steady state) where a11 magnetic moments of particles lie along the chain (x-axis), back to which the magnetic nanoparticle chain at other state will relax. It is found that the relaxation time T= is determined by Tx = 10β×α3. This relaxation is compared with that of single magnetic nanoparticle system. 展开更多
关键词 magnetic properties of nanostructures
下载PDF
Structures,properties,and challenges of emerging 2D materials in bioelectronics and biosensors 被引量:3
10
作者 Fan Chen Qing Tang +7 位作者 Tian Ma Bihui Zhu Liyun Wang Chao He Xianglin Luo Sujiao Cao Lang Ma Chong Cheng 《InfoMat》 SCIE CAS 2022年第5期102-138,共37页
Bioelectronics are powerful tools for monitoring and stimulating biological and biochemical processes,with applications ranging from neural interface simulation to biosensing.The increasing demand for bioelectronics h... Bioelectronics are powerful tools for monitoring and stimulating biological and biochemical processes,with applications ranging from neural interface simulation to biosensing.The increasing demand for bioelectronics has greatly promoted the development of new nanomaterials as detection platforms.Recently,owing to their ultrathin structures and excellent physicochemical properties,emerging two-dimensional(2D)materials have become one of the most researched areas in the fields of bioelectronics and biosensors.In this timely review,the physicochemical structures of the most representative emerging 2D materials and the design of their nanostructures for engineering highperformance bioelectronic and biosensing devices are presented.We focus on the structural optimization of emerging 2D material-based composites to achieve better regulation for enhancing the performance of bioelectronics.Subsequently,the recent developments of emerging 2D materials in bioelectronics,such as neural interface simulation,biomolecular/biomarker detection,and skin sensors are discussed thoroughly.Finally,we provide conclusive views on the current challenges and future perspectives on utilizing emerging 2D materials and their composites for bioelectronics and biosensors.This review will offer important guidance in designing and applying emerging 2D materials in bioelectronics,thus further promoting their prospects in a wide biomedical field. 展开更多
关键词 BIOELECTRONICS biosensors emerging 2D materials nanostructures and properties neural interfaces simulation
原文传递
Hydrothermal synthesis and optical properties of Zn_(1-x)Mn_xS nanorods
11
作者 Yangfeng Huang Yebin Cai Hao Liu 《Particuology》 SCIE EI CAS CSCD 2011年第5期533-536,共4页
Zn1-xMnxS (x = 0-0.05) nanorods were successfully synthesized through a hydrothermal route. The morphology, composition and microstructure of Zn1-xMnxS nanorods were characterized respectively by X-ray diffraction ... Zn1-xMnxS (x = 0-0.05) nanorods were successfully synthesized through a hydrothermal route. The morphology, composition and microstructure of Zn1-xMnxS nanorods were characterized respectively by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometer. The optical properties of Zn1-xMnxS nanorods were determineded by UV-Vis absorption spectroscopy and photo- luminescence (PL) emission spectroscopy. The results show that the introduction of Mn^2+ on interstitial sites in ZnS lattice has significant influence on the Raman spectra, UV-Vis absorption spectra and PL emis- sion spectra. With the increase of Mn^2+, the lengths of the sampled nanorods become shorter and the morphologies of the products show disorder accompanied by some nanoparticles. The absorption band edge shifts to longer wavelength. The intensity of the ZnS-related emission gradually becomes weaker, whereas, the Mn^2+-related broad emission spectra located at 580 nm gradually red-shifts and increases. Occupation of Zn^2+ sites in the lattice by Mn^2+ ions results in lattice distortion and influences the energy level structure of ZnS. The Mn doping is found responsible for the changes in the defect-related emission of the ZnS nanorods. 展开更多
关键词 Inorganic compound Chemical synthesis nanostructures Optical properties
原文传递
Fe–EBT Chelate Complex: A Novel Mean for Growth of α-FeOOH and γ-Fe_2O_3 Nanostructures
12
作者 Gajanan Pandey 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1127-1133,共7页
Acicular goethite(a-Fe OOH) and worm-like maghamite(γ-Fe2O3) nanostructures have been prepared adopting a novel route, using Na2[Fe(HL)2(H2O)2] chelate complex in alkaline medium. It is found that concentrati... Acicular goethite(a-Fe OOH) and worm-like maghamite(γ-Fe2O3) nanostructures have been prepared adopting a novel route, using Na2[Fe(HL)2(H2O)2] chelate complex in alkaline medium. It is found that concentration of hydrated Fe(III) ions increased with increasing temperature, which later play a key role in generation of different phases of iron oxide. Phase and morphology of the products are investigated using XRD, FTIR, SEM, and TEM analysis. Using UV–Vis spectra, various electronic transitions of goethite and maghamite particles are examined. Maghamite nanostructures exhibit superparamagnetic property at room temperature. On the basis of experimental observations and analytical data, growth mechanism of the nanostructures is discussed. 展开更多
关键词 Iron oxide nanostructures Chemical synthesis Growth mechanism Magnetic properties
原文传递
Enhancement of the Curie temperature of ferromagnetic semiconductor(Ga,Mn)As 被引量:2
13
作者 WANG HaiLong CHEN Lin ZHAO JianHua 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第1期99-110,共12页
In this review article,we review the progress made in the past several years mainly regarding the efforts devoted to increasing the Curie temperature(T C) of(Ga,Mn)As,which is most widely considered as the prototype f... In this review article,we review the progress made in the past several years mainly regarding the efforts devoted to increasing the Curie temperature(T C) of(Ga,Mn)As,which is most widely considered as the prototype ferromagnetic semiconductor.Heavy Mn doping,nanostructure engineering and post-growth annealing which increase T C are described in detail. 展开更多
关键词 magnetic semiconductors magnetic properties of nanostructures magnetotransport phenomena molecular-beam epitaxy
原文传递
Interfacial Synthesis ofδ-MnO2 Nano-sheets with a Large Surface Area and Their Application in Electrochemical Capacitors 被引量:4
14
作者 Zhijun Jia Jun wang +4 位作者 Yi Wang Bingyang Li Baoguo Wang Tao Qi Xin Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第2期147-152,共6页
Birnessite-type MnO2 (δ-MnO2) nano-sheets were successfully synthesized by an interracial synthesis method in this work. The properties and electrochemical performance of the as-prepared δ-MnO2 were analyzed and e... Birnessite-type MnO2 (δ-MnO2) nano-sheets were successfully synthesized by an interracial synthesis method in this work. The properties and electrochemical performance of the as-prepared δ-MnO2 were analyzed and evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption measurement and electrochemical tests. This facile synthesis method enables δ-MnO2 nanosheets to show a large specific surface area (257.5 m^2 g^-1). The electrochemical test results show that the specific capacitance is 272 F g^-1 and the specific capacitance retention is over 96.7% after 1000 cycles at a scan rate of 10 mV s^-1. All results demonstrate that δ-MnO2 has a great potential application in high- performance electrochemical capacitors, and this interracial synthesis method will be a very promising method to synthesize highly active MnO2 materials in a large scale. 展开更多
关键词 Oxides nanostructures Chemical synthesis Electron microscopy Electrochemical properties
原文传递
Hydrothermal synthesis and characterization of NiS flower-like architectures 被引量:1
15
作者 Hai Zhou Baoliang Lv +1 位作者 Dong Wu Yuhan Sun 《Particuology》 SCIE EI CAS CSCD 2012年第6期783-788,共6页
Under the influence of thiocyanate anions (SCN-) and cetyltrimethyl ammonium bromide (CTAB), NiS flower-like architectures were successfully synthesized by a one-step hydrothermal method. The syn-thesized flower-l... Under the influence of thiocyanate anions (SCN-) and cetyltrimethyl ammonium bromide (CTAB), NiS flower-like architectures were successfully synthesized by a one-step hydrothermal method. The syn-thesized flower-like architectures, with a multilayered and highly ordered texture, have diameters of several micrometers. X-ray powder diffraction (XRD) shows that the NiS flower-like architectures are rhombohedral crystalline. On the basis of condition-dependent experiments, the diffusion-limited aggregation (DLA) model and cage effect were used to explain the growth process of rhombohedral crystalline NiS flower-like architectures. Magnetic measurements showed that the coercivity (He) of the as-obtained NiS flower-like architectures was 102.14 Oe. 展开更多
关键词 nanostructures Chemical synthesis Electron microscopy Magnetic properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部