From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and...From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation.展开更多
SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of t...SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of the traditional SnO_(2)gas sensor is limited due to its higher work-temperature,low gas response,and poor selectivity.Nanomaterials can significantly impact gas-sensitive properties due to the quantum size,surface,and small size effects of nanomaterials.By applying nanotechnology to the preparation of SnO_(2),the SnO_(2)nanomaterial-based sensors could show better performance,which greatly expands the application of SnO_(2)gas sensors.In this review,the preparation method of the SnO_(2)nanostructure,the types of gas detected,and the improvements of SnO_(2)gas-sensing performances via elemental modification are introduced as well as the future development of SnO_(2)is discussed.展开更多
文摘From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation.
基金supported by National Natural Science Foundation of China(No.61761047 and 41876055)the Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology(Grant No.2017FA025)Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province。
文摘SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of the traditional SnO_(2)gas sensor is limited due to its higher work-temperature,low gas response,and poor selectivity.Nanomaterials can significantly impact gas-sensitive properties due to the quantum size,surface,and small size effects of nanomaterials.By applying nanotechnology to the preparation of SnO_(2),the SnO_(2)nanomaterial-based sensors could show better performance,which greatly expands the application of SnO_(2)gas sensors.In this review,the preparation method of the SnO_(2)nanostructure,the types of gas detected,and the improvements of SnO_(2)gas-sensing performances via elemental modification are introduced as well as the future development of SnO_(2)is discussed.