期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Negative differential resistance in an(8,0)carbon/boron nitride nanotube heterojunction
1
作者 宋久旭 杨银堂 +1 位作者 刘红霞 郭立新 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第4期21-24,共4页
Using the method combined non-equilibrium Green’s function with density functional theory,the electronic transport properties of an(8,0) carbon/boron nitride nanotube heterojunction coupled to Au electrodes were in... Using the method combined non-equilibrium Green’s function with density functional theory,the electronic transport properties of an(8,0) carbon/boron nitride nanotube heterojunction coupled to Au electrodes were investigated.In the current voltage characteristic of the heterojunction,negative differential resistance was found under positive and negative bias,which is the variation of the localization for corresponding molecular orbital caused by the applied bias voltage.These results are meaningful to modeling and simulating on related electronic devices. 展开更多
关键词 nanotube heterojunction negative differential resistance non-equilibrium green’s function
原文传递
Negative differential resistance in a molecular junction of carbon nanotube and benzene
2
作者 MA JiaSai LI DongMei +1 位作者 ZHAI YaXin ZHAO Peng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1433-1437,共5页
We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that ... We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. Moreover, the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, whereas not in the other two cases. 展开更多
关键词 negative differential resistance carbon nanotube electronic transport non-equilibrium green’s function
原文传递
Negative differential resistance behaviors in OPE derivatives combined C_(60) molecular junctions modulated with side groups
3
作者 MA JiaSai DONG HaiMing +1 位作者 LI DongMei LIU DeSheng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第8期1412-1416,共5页
By applying non-equilibrium Green's functions (NEGF) in combination with the density functional theory (DFT), we investigate the electronic transport properties of molecular junctions constructed by OPE derivative... By applying non-equilibrium Green's functions (NEGF) in combination with the density functional theory (DFT), we investigate the electronic transport properties of molecular junctions constructed by OPE derivatives with different side groups combined C60 molecules. The results show that the side groups play an important role in the properties of electron transport. Negative differential resistance (NDR) is observed in such devices. Especially for the molecule with electron-donating group ( OCH3), two NDR appear at different bias voltage regions. And the mechanism is proposed for the NDR behavior, owing to the shift of the molecular orbitals caused by the change in molecule charge. 展开更多
关键词 negative differential resistance electronic transport non-equilibrium greens function side groups
原文传递
Electronic transport properties of the armchair silicon carbide nanotube
4
作者 宋久旭 杨银堂 +2 位作者 刘红霞 郭立新 张志勇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第11期15-17,共3页
The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium tr... The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium transmission spectrum of the nanotube,a transmission valley of about 2.12 eV is discovered around Fermi energy,which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important,negative differential resistance is found in its current voltage characteristic.This phenomenon originates from the variation of density of states caused by applied bias voltage.These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices. 展开更多
关键词 electronic transport properties armchair silicon carbide nanotube negative differential resistance non-equilibrium greens function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部