期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
1
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 nanotubearrays HETEROJUNCTION VACANCY Bifunctional electrocatalyst Overall water splitting
下载PDF
Fabrication of quantum-sized Cd S-coated Ti O2 nanotube array with efficient photoelectrochemical performance using modified successive ionic layer absorption and reaction(SILAR) method 被引量:2
2
作者 Na Lu Yan Su +2 位作者 Jingyuan Li Hongtao Yu Xie Quan 《Science Bulletin》 SCIE EI CAS CSCD 2015年第14期1281-1286,共6页
Quantum-sized CdS-coated TiO2 nanotube array (Q-CdS-TiO2 NTA) was fabricated by the modified successive ionic layer absorption and reaction method. Scanning electron microscope and transmission electron microscope i... Quantum-sized CdS-coated TiO2 nanotube array (Q-CdS-TiO2 NTA) was fabricated by the modified successive ionic layer absorption and reaction method. Scanning electron microscope and transmission electron microscope images showed the regular structure of TiO2 NTA, where quantum-sized CdS (diameter 〈10nm) deposited on both the inside and outside of TiO2 nanotube wall. Fabrication conditions including immersing cycles, calcination temperature and drying process were well optimized, and the Q-CdS-TiO2 NTA and its photoelectrochemical (PEC) properties were characterized by X-ray fluorescence spectrometer, UV-Vis diffuse reflectance spectra and photovoltage. Distinct increases in visible light absorption and photocurrent were observed as the immersing cycle was increased from 5 to 20 times. The additional drying process accelerated the CdS crystal growth rate, and thus, the fabrication time could be shortened accordingly. Calcination temperature influenced the PEC property of Q-CdS-TiO2 NTA deeply, and the optimized calcination temperature was found as 500 ℃. As the Q-CdS-TiO2 NTA was fabricated under such condition, the visible photocurrent density increased to 2.8 mA/cm and the photovoltage between 350 and 480 nm was enhanced by 2.33 times than that without calcination. This study is expected to optimize Q-CdS-TiO2 NTA fabrication conditions for the purpose of improving its PEC performance. 展开更多
关键词 Quantum-sized CdS TiO2 nanotubearray Photoelectrochemical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部