期刊文献+
共找到16,061篇文章
< 1 2 250 >
每页显示 20 50 100
基于SWCNTs薄膜的多谐振环太赫兹超表面传感特性
1
作者 张向 罗帆 +2 位作者 任铭欣 宋博晨 王玥 《太赫兹科学与电子信息学报》 2024年第4期353-359,372,共8页
基于单壁碳纳米管(SWCNTs)薄膜,构建了一种具有多频窄带共振效应的新型太赫兹(THz)超表面。深入分析了周期性微结构单元参数对超表面的共振特性的影响;通过仿真及理论计算对器件的共振耦合机理进行研究,二者具有较好的一致性。通过在超... 基于单壁碳纳米管(SWCNTs)薄膜,构建了一种具有多频窄带共振效应的新型太赫兹(THz)超表面。深入分析了周期性微结构单元参数对超表面的共振特性的影响;通过仿真及理论计算对器件的共振耦合机理进行研究,二者具有较好的一致性。通过在超表面覆盖不同折射率的介质层,分析这种THz超表面器件的折射率传感特性,灵敏度分析结果显示,该超表面器件可实现最高64 GHz/RIU的折射率传感。 展开更多
关键词 太赫兹 单壁碳纳米管(swcnts) 超表面 传感器
下载PDF
SWCNTs的制备及其在生物传感器中的应用前景
2
作者 李栋 陈丽华 《山东化工》 CAS 2024年第3期121-123,共3页
SWCNTs独特的电子结构和几何形状赋予了它独特的荧光特性,具有良好的生物相容性和优异的光学性质,还具有高度均匀性以及小孔缺陷,易于处理。因此,它们被广泛应用于生物医学成像、生物传感和药物输送领域。本文对SWCNTs的制备及在荧光生... SWCNTs独特的电子结构和几何形状赋予了它独特的荧光特性,具有良好的生物相容性和优异的光学性质,还具有高度均匀性以及小孔缺陷,易于处理。因此,它们被广泛应用于生物医学成像、生物传感和药物输送领域。本文对SWCNTs的制备及在荧光生物传感器方向的应用研究进展进行了综述,并对其应用前景进行展望。 展开更多
关键词 swcnts 荧光 电化学 生物传感器 检测
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
3
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
4
作者 李耀隆 李松远 +1 位作者 王美芬 张任良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期66-69,共4页
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te... Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion. 展开更多
关键词 molecular dynamics thermal drive nanotube hoop mass transport
下载PDF
Enhancing the Interaction of Carbon Nanotubes by Metal-Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance
5
作者 Yu-Ying Shi Si-Yuan Liao +7 位作者 Qiao-Feng Wang Xin-Yun Xu Xiao-Yun Wang Xin-Yin Gu You-Gen Hu Peng-Li Zhu Rong Sun Yan-Jun Wan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期281-294,共14页
The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ... The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices. 展开更多
关键词 EMI shielding Mechanical strength Carbon nanotubes Metal-organic decomposition Flexibility
下载PDF
Vibration of black phosphorus nanotubes via orthotropic cylindrical shell model
6
作者 Minglei He Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期166-173,共8页
Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingopti... Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingoptimized nanodevices.In this paper,the mechanical behaviour and vibration property of BPNTs are studied viaorthotropic cylindrical shell model and molecular dynamics(MD)simulation.The vibration frequencies of twochiral BPNTs are analysed systematically.According to the results of MD calculations,it is revealed that thenatural frequencies of two BPNTs with approximately equal sizes are unequal at each order,and that the naturalfrequencies of armchair BPNTs are higher than those of zigzag BPNTs.In addition,an armchair BPNTs witha stable structure is considered as the object of research,and the vibration frequencies of BPNTs of differentsizes are analysed.When comparing the MD results,it is found that both the isotropic cylindrical shell modeland orthotropic cylindrical shell model can better predict the thermal vibration of the lower order modes of thelonger BPNTs better.However,for the vibration of shorter and thinner BPNTs,the prediction of the orthotropiccylindrical shell model is obviously superior to the isotropic shell model,thereby further proving the validity ofthe shell model that considers orthotropic for BPNTs. 展开更多
关键词 Orthotropic cylindrical shell Molecular dynamics simulation Black phosphorus nanotube VIBRATION
下载PDF
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
7
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu Zhikeng Zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue Porous carbon nanotubes Self-template method Wastewater treatment Supercapacitor electrode
下载PDF
Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols
8
作者 Zhihao Guo Jiuxuan Zhang +3 位作者 Lanlan Chen Chaoqun Fan Hong Jiang Rizhi Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期157-166,共10页
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named... The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols. 展开更多
关键词 Phenolic compounds Hollow ZIF-67 pyrolysis Nitrogen-doped carbon nanotubes Reduction Multiphase reaction Catalysis
下载PDF
Nonlinear phenomena in vibrations of embedded carbon nanotubes conveying viscous fluid
9
作者 Reza Ebrahimi 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期44-54,共11页
Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefo... Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefore,the main purpose of this paper is to predict the nonlinear dynamic behavior of a CNT conveying viscousfluid and supported on a nonlinear elastic foundation.The proposed model is based on nonlocal Euler–Bernoulli beam theory.The Galerkin method and perturbation analysis are used to discretize the partial differential equation of motion and obtain the frequency-response equation,respectively.A detailed parametric study is reported into how the nonlocal parameter,foundation coefficients,fluid viscosity,and amplitude and frequency of the external force influence the nonlinear dynamics of the system.Subharmonic,quasi-periodic,and chaotic behaviors and hardening nonlinearity are revealed by means of the vibration time histories,frequency-response curves,bifurcation diagrams,phase portraits,power spectra,and Poincarémaps.Also,the results show that it is possible to eliminate irregular motion in the whole range of external force amplitude by selecting appropriate parameters. 展开更多
关键词 Nonlinear vibration Carbon nanotubes Nonlocal effect Viscousfluid Nonlinear elastic medium
下载PDF
Study of the Diffusion Behavior of Seawater Absorption in Multi-Walled Carbon Nanotubes/Halloysite Nanotubes Hybrid Nanofillers Modified Epoxy-Based Glass/Carbon Fiber Composites
10
作者 Praful Choudhari Vivek Kulkarni Sanjeevakumar Khandal 《Modern Mechanical Engineering》 2024年第2期25-38,共14页
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har... In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients. 展开更多
关键词 Glass/Carbon Fiber Hybrid Composites Multiwall Carbon nanotubes (MWCNTs) Halloysite nanotubes (HNTs) Diffusion Behaviour Impact Properties Seawater Aging
下载PDF
In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH_(2) by adding porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres
11
作者 Bing Zhang Xiubo Xie +6 位作者 Yukun Wang Chuanxin Hou Xueqin Sun Yuping Zhang Xiaoyang Yang Ronghai Yu Wei Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1227-1238,共12页
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high... MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2). 展开更多
关键词 Mg-based hydrogen storage material Ni_(3)ZnC_(0.7)/Ni@CNT particles Ni loaded carbon nanotubes Multiple catalysts.
下载PDF
Single Wall Carbon Nanotubes (SWCNTs) as (i) Type in the Photovoltaic Cell of Nano-Dimensions
12
作者 Maen Ishtaiwi Muna Hajjyahya +1 位作者 Khalid Abd-Haqq Mohammed Bashar 《Journal of Applied Mathematics and Physics》 2022年第5期1694-1701,共8页
In this paper, a new modified approach to design the photovoltaic cell has been presented by adding Single Wall Carbon Nanotubes (SWCNTs) as type (i). The main issue is to increase the efficiency of the photovoltaic c... In this paper, a new modified approach to design the photovoltaic cell has been presented by adding Single Wall Carbon Nanotubes (SWCNTs) as type (i). The main issue is to increase the efficiency of the photovoltaic cell, on the other hand, to exploit a larger range of electromagnetic wave frequencies, specifically a range within terahertz (THz) frequency domain, using 3D EM computer simulation technology (CST). It is clear in the normal PV cell start working at frequency of 500 THz, while the frequency at which the PV cell with SWCNTs operates is much less and it is close to zero, on the other hand, the PV cell with SWCNTs needs a larger cross-section area of 2800 nm2 to operate at frequency of 500 THz. This cell can be easily produced industrially, which means increases the efficiency of solar cell. 展开更多
关键词 Single Wall Carbon nanotubes (swcnts) Photovoltaic Cell (PV) CST Simulation
下载PDF
PANi/SWCNTs复合薄膜的电化学制备及其热电性能优化 被引量:1
13
作者 徐昕进 周卫强 蒋丰兴 《江西科技师范大学学报》 2023年第6期23-27,共5页
本文采用恒电位电化学聚合法,研究了单体苯胺浓度及聚合时间对聚苯胺/单壁碳纳米管(PANi/SWCNTs)复合薄膜热电性能的影响。与SWCNTs薄膜相比,复合薄膜的Seebeck系数变大,从而将功率因子提升至72.01μW m-1K-2。而通过电化学后处理后,复... 本文采用恒电位电化学聚合法,研究了单体苯胺浓度及聚合时间对聚苯胺/单壁碳纳米管(PANi/SWCNTs)复合薄膜热电性能的影响。与SWCNTs薄膜相比,复合薄膜的Seebeck系数变大,从而将功率因子提升至72.01μW m-1K-2。而通过电化学后处理后,复合薄膜的氧化水平和掺杂水平得以优化,其电导率、Seebeck系数均获得进一步提升,使功率因子提升至90.06μW m-1K-2。 展开更多
关键词 聚苯胺 热电 碳纳米管 复合材料 电化学
下载PDF
Effect of Surfactants on the Thermoelectric Performance of Double-Walled Carbon Nanotubes 被引量:1
14
作者 Zakaria Saadi Simon G.King +2 位作者 Jose V.Anguita Vlad Stolojan S.Ravi P.Silva 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期274-280,共7页
Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made... Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made of expensive ceramics.The challenge in developing better performing materials is in disrupting the electrical vs thermal conductivity correlation,to achieve low thermal conductivity simultaneously with a high electrical conductivity.Carbon nanotubes allow for the decoupling of the electronic density of states from the phonon density of states and this paper shows that flexible,thin films of double-walled carbon nanotube(DWCNT)can form effective n-and p-doped semiconductors that can achieve a combined Seebeck coefficient of 157.6µV K^(−1),the highest reported for a single DWCNT device to date.This is achieved through selected surfactant doping,whose role is correlated with the length of the hydrocarbon chain of the hydrophobic tail group of the surfactant’s molecules.CNTs functionalized with Triton X-405 show the highest output power consisting of a single junction of p-and n-type thermoelectric elements,reaching as high as 67 nW for a 45 K temperature gradient.Thus enabling flexible,cheaper,and more efficient thermoelectric generators through the use of functionalized CNTs. 展开更多
关键词 carbon nanotubes DWCNT FUNCTIONALIZATION SURFACTANT THERMOELECTRIC
下载PDF
Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution 被引量:1
15
作者 Qixing Zhou Ruoxu Sun +7 位作者 Yiping Ren Run Tian Jun Yang Huan Pang Kai Huang Xinlong Tian Lin Xu Yawen Tang 《Carbon Energy》 SCIE CAS CSCD 2023年第1期194-205,共12页
The development of economical,efficient,and robust electrocatalysts toward the hydrogen evolution reaction(HER)is highly imperative for the rapid advancement of renewable H2 energy-associated technologies.Extensive ut... The development of economical,efficient,and robust electrocatalysts toward the hydrogen evolution reaction(HER)is highly imperative for the rapid advancement of renewable H2 energy-associated technologies.Extensive utilization of the heterointerface effect can endow the catalysts with remarkably boosted electrocatalytic performance due to the modified electronic state of active sites.Herein,we demonstrate deliberate crafting of CoP/CoO heterojunction porous nanotubes(abbreviated as CoP/CoO PNTs hereafter)using a self-sacrificial template-engaged strategy.Precise control over the Kirkendall diffusion process of the presynthesized cobalt–aspartic acid complex nanowires is indispensable for the formation of CoP/CoO heterostructures.The topochemical transformation strategy of the reactive templates enables uniform and maximized construction of CoP/CoO heterojunctions throughout all the porous nanotubes.The establishment of CoP/CoO heterojunctions could considerably modify the electronic configuration of the active sites and also improve the electric conductivity,which endows the resultant CoP/CoO PNTs with enhanced intrinsic activity.Simultaneously,the hollow and porous nanotube architectures allow sufficient accessibility of exterior/interior surfaces and molecular permeability,drastically promoting the reaction kinetics.Consequently,when used as HER electrocatalysts,the well-designed CoP/CoO PNTs show Pt-like activity,with an overpotential of only 61 mV at 10mA cm^(−2) and excellent stability in 1.0M KOH medium,exceeding those of the vast majority of the previously reported nonprecious candidates.Density functional theory calculations further substantiate that the construction of CoP/CoO heterojunctions enables optimization of the Gibbs free energies for water adsorption and H adsorption,resulting in boosted HER intrinsic activity.The present study may provide in-depth insights into the fundamental mechanisms of heterojunction-induced electronic regulation,which may pave the way for the rational design of advanced Earth-abundant electrocatalysts in the future. 展开更多
关键词 heterojunction hydrogen evolution reaction porous nanotubes reactive template
下载PDF
Influence of Plasma Modified Carbon Nanotubes on the Resistance Sensitiveness of Cement 被引量:1
16
作者 朱远恒 孙敏 +2 位作者 LI Zhendong LIU Yangyang FANG Youzhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期136-140,共5页
The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)... The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)at different perntages were tested under repeated cyclic axial compressive stress by four electrode methods to measure the electric resistance.Those made with CNTs without plasma treatment as controls were tested also.The results showed that electric resistance change values of the cement mortar with P-CNT and CNT were all monatomic corresponding to the cyclic loading.When the water-cement ratio of the mortar was fixed,increasing of the P-CNT/CNT content would increase the resistance change value of the mortars added with P-CNT/CNT,and the sensitivity performance.It has certain engineering application value. 展开更多
关键词 carbon nanotubes cement mortar resistance change smart performance
下载PDF
Melatonin,tunneling nanotubes,mesenchymal cells,and tissue regeneration 被引量:2
17
作者 Francesca Luchetti Silvia Carloni +2 位作者 Maria G.Nasoni Russel J.Reiter Walter Balduini 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期760-762,共3页
Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs.Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to trans... Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs.Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to transdifferentiate into various lineages.However,when transplanted,they lose part of their multipotency and immunomodulatory properties,and most of them die after injection into the damaged tissue.In this review,we discuss the potential utility of melatonin in preserving mesenchymal stem cells’survival and function after transplantation.Melatonin is a pleiotropic molecule regulating critical cell functions including apoptosis,endoplasmic reticulum stress,and autophagy.Melatonin is also synthesized in the mitochondria where it reduces oxidative stress,the opening of the mitochondrial permeability transition pore and the downstream caspase activation,activates uncoupling proteins,and curtails the proinflammatory response.In addition,recent findings showed that melatonin also promotes the formation of tunneling nanotubes and the transfer of mitochondria between cells through the connecting tubules.As mitochondrial dysfunction is a primary cause of mesenchymal stem cells death and senescence and a critical issue for survival after transplantation,we propose that melatonin by favoring mitochondria functionality and their transfer through tunneling nanotubes from healthy to suffering cells could improve mesenchymal stem cellbased therapy in a large number of diseases for which basic and clinical trials are underway. 展开更多
关键词 brain ischemia cell transplantation MELATONIN mesenchymal stem cell MITOCHONDRIA mitochondrial transplantation regenerative therapy SENESCENCE tunneling nanotubes
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:1
18
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Impact of Radiation and Slip on Newtonian Liquid Flow Past a Porous Stretching/Shrinking Sheet in the Presence of Carbon Nanotubes
19
作者 U.S.Mahabaleshwar T.Anusha +1 位作者 M.EL Ganaoui R.Bennacer 《Fluid Dynamics & Materials Processing》 EI 2023年第4期929-939,共11页
The impacts of radiation,mass transpiration,and volume fraction of carbon nanotubes on the flow of a Newtonian fluid past a porous stretching/shrinking sheet are investigated.For this purpose,three types of base liqui... The impacts of radiation,mass transpiration,and volume fraction of carbon nanotubes on the flow of a Newtonian fluid past a porous stretching/shrinking sheet are investigated.For this purpose,three types of base liquids are considered,namely,water,ethylene glycol and engine oil.Moreover,single and multi-wall carbon nanotubes are examined in the analysis.The overall physical problem is modeled using a system of highly nonlinear partial differential equations,which are then converted into highly nonlinear third order ordinary differential equations via a suitable similarity transformation.These equations are solved analytically along with the corresponding boundary conditions.It is found that the carbon nanotubes can significantly improve the heat transfer process.Their potential application in cutting-edge areas is also discussed to a certain extent. 展开更多
关键词 Carbon nanotubes porous media newtonian fluid RADIATION
下载PDF
Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption
20
作者 Luo Kong Sihan Luo +2 位作者 Shuyu Zhang Guiqin Zhang Yi Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期570-580,共11页
For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D ... For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D porous pyrolytic carbon(PyC)foam matrix was synthesized by a template method.Amorphous carbon nanotubes(CNTs)were then in-situ grown on the matrix surface to obtain ultralight CNTs/Py C foam.These in-situ grown amorphous CNTs were distributed uniformly and controlled by the catalytic growth time and can enhance the interface polarization and conduction loss of composites.When the electromagnetic wave enters the internal holes,the electromagnetic energy can be completely attenuated under the combined action of polarization,conductivity loss,and multiple reflections.The ultralight CNTs/Py C foam had a density of 22.0 mg·cm^(-3)and a reflection coefficient lower than-13.3 d B in the whole X-band(8.2-12.4 GHz),which is better than the conventional standard of effective absorption bandwidth(≤-10 dB).The results provide ideas for researching ultralight and strong electromagnetic wave absorbing materials in the X-band. 展开更多
关键词 ultralight carbon foam amorphous carbon nanotubes broadband electromagnetic absorption
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部