期刊文献+
共找到209,953篇文章
< 1 2 250 >
每页显示 20 50 100
Study of the Diffusion Behavior of Seawater Absorption in Multi-Walled Carbon Nanotubes/Halloysite Nanotubes Hybrid Nanofillers Modified Epoxy-Based Glass/Carbon Fiber Composites
1
作者 Praful Choudhari Vivek Kulkarni Sanjeevakumar Khandal 《Modern Mechanical Engineering》 2024年第2期25-38,共14页
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har... In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients. 展开更多
关键词 Glass/carbon Fiber Hybrid Composites Multiwall carbon nanotubes (MWCNTs) Halloysite nanotubes (HNTs) Diffusion Behaviour Impact Properties Seawater Aging
下载PDF
In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH_(2) by adding porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres 被引量:1
2
作者 Bing Zhang Xiubo Xie +6 位作者 Yukun Wang Chuanxin Hou Xueqin Sun Yuping Zhang Xiaoyang Yang Ronghai Yu Wei Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1227-1238,共12页
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high... MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2). 展开更多
关键词 Mg-based hydrogen storage material Ni_(3)ZnC_(0.7)/Ni@CNT particles Ni loaded carbon nanotubes Multiple catalysts.
下载PDF
Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols
3
作者 Zhihao Guo Jiuxuan Zhang +3 位作者 Lanlan Chen Chaoqun Fan Hong Jiang Rizhi Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期157-166,共10页
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named... The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols. 展开更多
关键词 Phenolic compounds Hollow ZIF-67 pyrolysis Nitrogen-doped carbon nanotubes Reduction Multiphase reaction Catalysis
下载PDF
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
4
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu Zhikeng Zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue Porous carbon nanotubes Self-template method Wastewater treatment Supercapacitor electrode
下载PDF
Co/CoO heterojunction rich in oxygen vacancies introduced by O_(2) plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc-air battery 被引量:1
5
作者 Leijun Ye Weiheng Chen +1 位作者 Zhong-Jie Jiang Zhongqing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期14-25,共12页
Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well... Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs. 展开更多
关键词 HETEROJUNCTION oxygen evolution/reduction reaction oxygen vacancies rechargeable zinc–air battery three‐dimensional nitrogen‐doped hollow carbon nanoboxes
下载PDF
Enhancing the Interaction of Carbon Nanotubes by Metal-Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance 被引量:3
6
作者 Yu-Ying Shi Si-Yuan Liao +7 位作者 Qiao-Feng Wang Xin-Yun Xu Xiao-Yun Wang Xin-Yin Gu You-Gen Hu Peng-Li Zhu Rong Sun Yan-Jun Wan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期281-294,共14页
The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ... The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices. 展开更多
关键词 EMI shielding Mechanical strength carbon nanotubes Metal-organic decomposition Flexibility
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
7
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Hollow tubes constructed by carbon nanotubes self-assembly for CO_(2) capture
8
作者 CHEN Xu-rui WU Jun +1 位作者 GU Li CAO Xue-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2256-2267,共12页
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac... Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture. 展开更多
关键词 carbon nanotubes SELF-ASSEMBLY hollow tubes CO_(2) capture
下载PDF
Superior Anodic Lithium Storage in Core–Shell Heterostructures Composed of Carbon Nanotubes and Schiff-Base Covalent Organic Frameworks
9
作者 Nan Jiang Mengpei Qi +3 位作者 Yalong Jiang Yin Fan Shiwei Jin Yingkui Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期150-157,共8页
Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Here... Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Herein,integrating carbon nanotubes(CNTs)with imine-linked covalent organic frameworks(COFs)was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites(CNT@COF).Accordingly,the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area,thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode.Remarkably,upon the full activation with a superlithiation process,the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g^(−1),which is the highest specific capacity among organic electrode materials reported so far.Meanwhile,the superior rate capability and excellent cycling stability are also obtained.The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy,involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs. 展开更多
关键词 heterostructured anode core-shell nanostructures carbon nanotubes polymeric Schiff-bases covalent organic frameworks
下载PDF
Electronic Communication Between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction
10
作者 Meng-Ting Gao Ying Wei +8 位作者 Xue-Meng Hu Wenj-Jie Zhu Qing-Qing Liu Jin-Yuan Qiang Wan-Wan Liu Ying Wang Xu Li Jian-Feng Huang Yong-Qiang Feng 《电化学(中英文)》 CAS 北大核心 2024年第9期1-9,共9页
Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic ... Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion. 展开更多
关键词 CoRu alloy ELECTROCATALYST Water splitting Hydrogen evolution reaction carbon nanotubes
下载PDF
Nonlinear phenomena in vibrations of embedded carbon nanotubes conveying viscous fluid
11
作者 Reza Ebrahimi 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期44-54,共11页
Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefo... Various nonlinear phenomena such as bifurcations and chaos in the responses of carbon nanotubes(CNTs)are recognized as being major contributors to the inaccuracy and instability of nanoscale mechanical systems.Therefore,the main purpose of this paper is to predict the nonlinear dynamic behavior of a CNT conveying viscousfluid and supported on a nonlinear elastic foundation.The proposed model is based on nonlocal Euler–Bernoulli beam theory.The Galerkin method and perturbation analysis are used to discretize the partial differential equation of motion and obtain the frequency-response equation,respectively.A detailed parametric study is reported into how the nonlocal parameter,foundation coefficients,fluid viscosity,and amplitude and frequency of the external force influence the nonlinear dynamics of the system.Subharmonic,quasi-periodic,and chaotic behaviors and hardening nonlinearity are revealed by means of the vibration time histories,frequency-response curves,bifurcation diagrams,phase portraits,power spectra,and Poincarémaps.Also,the results show that it is possible to eliminate irregular motion in the whole range of external force amplitude by selecting appropriate parameters. 展开更多
关键词 Nonlinear vibration carbon nanotubes Nonlocal effect Viscousfluid Nonlinear elastic medium
下载PDF
Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
12
作者 李耀隆 李松远 +1 位作者 王美芬 张任良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期66-69,共4页
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te... Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion. 展开更多
关键词 molecular dynamics thermal drive nanotube hoop mass transport
下载PDF
The Influence of Carbon Nanotubes and Nano-Silica Fume on Enhancing the Damping and Mechanical Properties of Cement-Based Materials
13
作者 Bin Liu Norhaiza Nordin +2 位作者 Jiyang Wang Jingwei Wu Xiuliang Liu 《Materials Sciences and Applications》 2024年第9期399-416,共18页
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie... This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials. 展开更多
关键词 Cement-based Composites carbon nanotubes Nano Silica Fume Damping Property Mechanical Property
下载PDF
Interface Engineering of Fe_(7)S_(8)/FeS_(2) Heterostructure in situ Encapsulated into Nitrogen‑Doped Carbon Nanotubes for High Power Sodium‑Ion Batteries 被引量:1
14
作者 Penghao Song Jian Yang +4 位作者 Chengyin Wang Tianyi Wang Hong Gao Guoxiu Wang Jiabao Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期167-180,共14页
Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide e... Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage.Herein,the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes(Fe_(7)S_(8)/FeS_(2)/NCNT)have been prepared through a successive pyrolysis and sulfidation approach.The Fe_(7)S_(8)/FeS_(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g^(−1) up to 100 cycles at 1.0 A g^(−1) and superior rate capability(273.4 mAh g^(−1) at 20.0 A g^(−1))in ester-based electrolyte.Meanwhile,the electrodes also demonstrated long-term cycling stability(466.7 mAh g^(−1) after 1,000 cycles at 5.0 A g^(−1))and outstanding rate capability(536.5 mAh g^(−1) at 20.0 A g^(−1))in ether-based electrolyte.This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics,high capacitive contribution,and convenient interfacial dynamics in ether-based electrolyte. 展开更多
关键词 Iron sulfides HETEROSTRUCTURE Nitrogen-doped carbon nanotubes Ester-based electrolyte Ether-based electrolyte
下载PDF
Facile filling of metal particles in small carbon nanotubes for catalysis 被引量:3
15
作者 Hongbo Zhang Xiulian Pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期251-256,共6页
A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catal... A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catalyst exhibit a higher benzene hydroxylation activity compared with that within multi-walled carbon nanotubes. 展开更多
关键词 double-walled carbon nanotubes (DWCNTs) single-walled carbon nanotubes (SWCNTs) nanoparticles wet chemistry benzene hydroxyla-tion
下载PDF
Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation 被引量:1
16
作者 Ting Zhang Wanzong Wang +3 位作者 Zheng Ma Lei Bai Yue Yao Dongqing Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1816-1823,共8页
Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properti... Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions(MORs), which yet still suffer from low electrochemical activity and electron-transfer properties. Apart from van-der-Waals heterostructures,herein, we report a novel nanocomposite with the structure of Pt–Ru bimetallic nanoparticles covalently-bonded onto multi-walled carbon nanotubes (MWCNTs)(Pt–Ru@MWCNT), which have been successfully fabricated via a facile and green synthesis method. It is demonstrated that the Pt–Ru@MWCNT nanocomposite possesses much enhanced electrocatalytic activity with the electrochemical active surface area(ECSA) of 110.4 m^(2)·g^(-1)for Pt towards MOR, which is 2.67 and 4.0 times higher than those of 20wt%commercial Pt@C and Pt-based nanocomposite prepared by other method, due to the improved electron-transfer properties originated from M–O–C covalent bonds. This work provides us a new strategy for the structural design of highly-efficient electrocatalysts in boosting MOR performance. 展开更多
关键词 bimetallic Pt-Ru nanocomposite high loaded functionalized multi-walled carbon nanotubes methanol oxidation green hydrothermal synthesis
下载PDF
Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption
17
作者 Luo Kong Sihan Luo +2 位作者 Shuyu Zhang Guiqin Zhang Yi Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期570-580,共11页
For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D ... For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D porous pyrolytic carbon(PyC)foam matrix was synthesized by a template method.Amorphous carbon nanotubes(CNTs)were then in-situ grown on the matrix surface to obtain ultralight CNTs/Py C foam.These in-situ grown amorphous CNTs were distributed uniformly and controlled by the catalytic growth time and can enhance the interface polarization and conduction loss of composites.When the electromagnetic wave enters the internal holes,the electromagnetic energy can be completely attenuated under the combined action of polarization,conductivity loss,and multiple reflections.The ultralight CNTs/Py C foam had a density of 22.0 mg·cm^(-3)and a reflection coefficient lower than-13.3 d B in the whole X-band(8.2-12.4 GHz),which is better than the conventional standard of effective absorption bandwidth(≤-10 dB).The results provide ideas for researching ultralight and strong electromagnetic wave absorbing materials in the X-band. 展开更多
关键词 ultralight carbon foam amorphous carbon nanotubes broadband electromagnetic absorption
下载PDF
Binary molten salt in situ synthesis of sandwich-structure hybrids of hollowβ-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction
18
作者 Tianyu Gong Yang Liu +6 位作者 Kai Cui Jiali Xu Linrui Hou Haowen Xu Ruochen Liu Jianlin Deng Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期111-124,共14页
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water... Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution. 展开更多
关键词 binary molten-salt synthesis hydrogen evolution reaction Mo2C hollow nanotubes N-doped carbon nanosheets sandwich structure
下载PDF
Field Emission from a Mixture of Amorphous Carbon and Carbon Nanotubes Films 被引量:2
19
作者 张新月 姚宁 +1 位作者 王英俭 张兵临 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第8期1484-1486,共3页
A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flo... A mixture of amorphous carbon and carbon nanotubes films was synthesized on stainless steel plates by a micro- wave plasma enhanced chemical vapor deposition system. The source gases were hydrogen and methane with flow rates of 100 and 16sccm,respectively,with a total pressure of 5.0kPa. The surface morphology and the structure of the films were characterized by field emission scanning electron microscopy (SEM) and Raman scattering spectroscopy. Field emission properties of as-deposited film were measured in a vacuum room below 5 ×10^ 5 Pa. The experimental results show that the initial turn-on field is 0. 9V/μm; The current density is 4.0mA/cm2 and the emission sites are dense and uniform at an electric field of 3.7V/μm. These results indicate that such a mixture of amorphous carbon and carbon nanotubes films is a promising material for field emission applications. 展开更多
关键词 amorphous carbon carbon nanotubes film field electron emission
下载PDF
Influence of Plasma Modified Carbon Nanotubes on the Resistance Sensitiveness of Cement 被引量:1
20
作者 朱远恒 孙敏 +2 位作者 LI Zhendong LIU Yangyang FANG Youzhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期136-140,共5页
The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)... The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)at different perntages were tested under repeated cyclic axial compressive stress by four electrode methods to measure the electric resistance.Those made with CNTs without plasma treatment as controls were tested also.The results showed that electric resistance change values of the cement mortar with P-CNT and CNT were all monatomic corresponding to the cyclic loading.When the water-cement ratio of the mortar was fixed,increasing of the P-CNT/CNT content would increase the resistance change value of the mortars added with P-CNT/CNT,and the sensitivity performance.It has certain engineering application value. 展开更多
关键词 carbon nanotubes cement mortar resistance change smart performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部