Chrysanthemum-like ZnO nanowire clusters with different Sb-doping concentrations were prepared using a hy- drothermal process. The microstructures, morphologies, and dielectric properties of the as-prepared products w...Chrysanthemum-like ZnO nanowire clusters with different Sb-doping concentrations were prepared using a hy- drothermal process. The microstructures, morphologies, and dielectric properties of the as-prepared products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM), and microwave vector network analyzer respectively. The results indicate that the as-prepared products are Sb-doped ZnO single crystallines with a hexagonal wurtzite structure, the flower bud saturation degree Fd is obviously different from that of the pure ZnO nanowire clusters, the good dielectric loss property is found in Sb-doped ZnO products with low density, and the dielectric loss tangent tanSe increases with the increase of the Sb-doping concentration in a certain concentration range.展开更多
Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructnre, morphology and electromagnetic properties are characterized by x-ray diffrac...Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructnre, morphology and electromagnetic properties are characterized by x-ray diffractometer high-resolution transmission electron microscopy (HRTEM), a field emission environment scanning electron microscope (FEESEM) and a microwave vector network analyser respectively. The experimental results indicate that the as- prepared products are Mn-doped ZnO single crystalline with a hexagonal wurtzite structure, that the growth habit changes due to Mn-doping and that a good magnetic loss property is found in the Mn-doped ZnO products, and the average magnetic loss tangent tandm is up to 0.170099 for 3% Mn-doping, while the dielectric loss tangent tande is weakened, owing to the fact that ions Mn2+ enter the crystal lattice of ZnO.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976069)the Natural Science Foundation of Shaanxi Province, China (Grant No. 2010JM6008)the Xi’an Scientific and Technological Project, China (GrantNo. CXY1008)
文摘Chrysanthemum-like ZnO nanowire clusters with different Sb-doping concentrations were prepared using a hy- drothermal process. The microstructures, morphologies, and dielectric properties of the as-prepared products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM), and microwave vector network analyzer respectively. The results indicate that the as-prepared products are Sb-doped ZnO single crystallines with a hexagonal wurtzite structure, the flower bud saturation degree Fd is obviously different from that of the pure ZnO nanowire clusters, the good dielectric loss property is found in Sb-doped ZnO products with low density, and the dielectric loss tangent tanSe increases with the increase of the Sb-doping concentration in a certain concentration range.
基金supported by the National Natural Science Foundation of China (Grant No. 60976069)the Natural Science Foundation of Shaanxi Province,China (Grant No. 2010JM6008)the Xi’an Scientific and Technological Project,China (Grant No. CXY1008)
文摘Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructnre, morphology and electromagnetic properties are characterized by x-ray diffractometer high-resolution transmission electron microscopy (HRTEM), a field emission environment scanning electron microscope (FEESEM) and a microwave vector network analyser respectively. The experimental results indicate that the as- prepared products are Mn-doped ZnO single crystalline with a hexagonal wurtzite structure, that the growth habit changes due to Mn-doping and that a good magnetic loss property is found in the Mn-doped ZnO products, and the average magnetic loss tangent tandm is up to 0.170099 for 3% Mn-doping, while the dielectric loss tangent tande is weakened, owing to the fact that ions Mn2+ enter the crystal lattice of ZnO.