期刊文献+
共找到455篇文章
< 1 2 23 >
每页显示 20 50 100
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:2
1
作者 Hui Liu Jingsha Li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming Li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 Electrocatalytic nitrate reduction Ammonia production Core–shell heterostructure Copper oxides nanowire arrays Cobalt oxidesflocs
下载PDF
Direct Z-scheme WO_(3-x) nanowire-bridged TiO_(2) nanorod arrays for highly efficient photoelectrochemical overall water splitting 被引量:2
2
作者 Sheng Lin He Ren +7 位作者 Zhi Wu Lan Sun Xia-Guang Zhang Yu-Mei Lin Kelvin H.L.Zhang Chang-Jian Lin Zhong-Qun Tian Jian-Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期721-729,I0015,共10页
All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a di... All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a direct Z-scheme photoelectrocatalytic electrode based on a WO_(3-x)nanowire-bridged TiO_(2)nanorod array heterojunction is constructed for overall water splitting,producing H_(2).The as-prepared WO_(3-x)/TiO_(2)nanorod array heterojunction shows photoelectrochemical(PEC)overall water splitting activity evolving both H_(2) and O_(2)under UV-vis light irradiation.An optimum PEC activity was achieved over a 1.67-WO_(3-x)/TiO_(2)photoelectrode yielding maximum H_(2) and O_(2)evolution rates roughly 11 times higher than that of pure TiO_(2)nanorods without any sacrificial agent or redox mediator.The role of oxygen vacancy in WO_(3-x)in affecting the H_(2) production rate was also comprehensively studied.The superior PEC activity of the WO_(3-x)/TiO_(2)electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO_(3-x)nanowires and TiO_(2)nanorods,the presence of oxygen vacancies in WO_(3-x),and a bias potential applied on the photoelectrode,resulting in effective spatial charge separation.This study provides a novel strategy for developing highly efficient PECs for overall water splitting. 展开更多
关键词 TiO_(2) nanorod arrays WO_(3-x) nanowire Heterostructure PHOTOELECTROCHEMICAL Hydrogen production
下载PDF
Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays 被引量:4
3
作者 Weiwei Zhu Kuangmin Zhao +7 位作者 Suqin Liu Min Liu Feng Peng Pengda An Binhao Qin Huimin Zhou Hongmei Li Zhen He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期176-182,共7页
Direct electrochemical reduction of CO2 to multicarbon products is highly desirable, yet challenging. Here, we present a potentiostatic pulse-electrodeposition of high-aspect-ratio CuxAuy nanowire arrays (NWAs) as hig... Direct electrochemical reduction of CO2 to multicarbon products is highly desirable, yet challenging. Here, we present a potentiostatic pulse-electrodeposition of high-aspect-ratio CuxAuy nanowire arrays (NWAs) as high-performance electrocatalysts for the CO2 reduction reaction (CO2RR). The surface electronic structure related to the Cu:Au ratio in the CuxAuy NWAs could be facilely modulated by controlling the electrodeposition potential and the as-fabricated CuxAuy NWAs could be directly used as the catalytic electrode for the CO2RR. The morphology of the high-aspect-ratio nanowire array significantly lowers the onset potential of the alcohol formation due to the diffusion-induced enhancement of the local pH and CO concentration near the nanowire surface. Besides, the properly adjusted surface electronic structure of the CuxAuy NWA enables the adsorption of CO and facilitates the subsequent CO reduction to ethanol via the C-C coupling pathway. Owing to the synergistic effect of morphology and electronic structure, the optimized CuxAuy NWA selectively reduces CO2 to ethanol at low potentials of -0.5——0.7 V vs. RHE with a highest Faradaic efficiency of 48%. This work demonstrates the feasibility to optimize the activity and selectivity of the Cu-based electrocatalysts toward multicarbon alcohols for the CO2RR via simultaneous adjustment of the electronic structure and morphology of the catalysts. 展开更多
关键词 CO2 reduction ELECTROCATALYSIS nanowire array SELECTIVITY Cu-based catalyst
下载PDF
Preparation and characterization of La-Co alloy nanowire arrays by electrodeposition in AAO template under nonaqueous system 被引量:4
4
作者 龚晓钟 汤皎宁 +1 位作者 李均钦 梁永康 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第3期642-647,共6页
La-Co alloy nanowires can be made in pulse reversal current(PRC) and direct current(DC) electrodepositions under nonaqueous system, with the porous anodic aluminum oxide(AAO) as template. This membrane is subject to t... La-Co alloy nanowires can be made in pulse reversal current(PRC) and direct current(DC) electrodepositions under nonaqueous system, with the porous anodic aluminum oxide(AAO) as template. This membrane is subject to the dual-oxidation (two-step) anodizing. Scanning electron microscope(SEM) examination shows that all of the nanowires have uniform diameter about 200 nm, and their diameters are determined by the pore diameter of applied AAO template. X-ray energy dispersion analysis indicates that the chemical composition of La and Co elements is very close to 1-2 in stoichiometry. X-ray diffraction pattern investigation demonstrates that La-Co nanowire is the face-centered cubic(FCC) LaCo13. 展开更多
关键词 镧钴合金 纳米导体 电沉积 AAO模板
下载PDF
Hierarchical Self-assembly of Well-Defined Louver-Like P-Doped Carbon Nitride Nanowire Arrays with Highly Effcient Hydrogen Evolution 被引量:3
5
作者 Bo Li Yuan Si +6 位作者 Qian Fang Ying Shi Wei‑Qing Huang Wangyu Hu Anlian Pan Xiaoxing Fan Gui‑Fang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期76-91,共16页
Self-assembled nanostructure arrays integrating the advantages of the intrinsic characters of nanostructure as well as the array stability are appealing in advanced materials.However,the precise bottom-up synthesis of... Self-assembled nanostructure arrays integrating the advantages of the intrinsic characters of nanostructure as well as the array stability are appealing in advanced materials.However,the precise bottom-up synthesis of nanostructure arrays without templates or substrates is quite challenging because of the general occurrence of homogeneous nucleation and the difficult manipulation of noncovalent interactions.Herein,we first report the precisely manipulated synthesis of well-defined louver-like P-doped carbon nitride nanowire arrays(L-PCN)via a supramolecular self-assembly method by regulating the noncovalent interactions through hydrogen bond.With this strategy,CN nanowires align in the outer frame with the separation and spatial location achieving ultrastability and outstanding photoelectricity properties.Significantly,this self-assembly L-PCN exhibits a superior visible light-driven hydrogen evolution activity of 1872.9μmol h^−1 g^−1,rendering a^25.6-fold enhancement compared to bulk CN,and high photostability.Moreover,an apparent quantum efficiency of 6.93%is achieved for hydrogen evolution at 420±15 nm.The experimental results and first-principles calculations demonstrate that the remarkable enhancement of photocatalytic activity of L-PCN can be attributed to the synergetic effect of structural topology and dopant.These findings suggest that we are able to design particular hierarchical nanostructures with desirable performance using hydrogen-bond engineering. 展开更多
关键词 SELF-ASSEMBLY Carbon nitride P-doped nanowire arrays Hydrogen evolution
下载PDF
Preparation and characterization of highly ordered NiO nanowire arrays by sol-gel template method 被引量:3
6
作者 Mei Yu Jianhua Liu Songmei Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期169-173,共5页
Highly ordered nickel monoxide (NiO) nanowire arrays were fabricated by sol-gel synthesis within the pores of anodic alumina membrane (AAM). Scanning electron microscopy (SEM), high resolution transmission elect... Highly ordered nickel monoxide (NiO) nanowire arrays were fabricated by sol-gel synthesis within the pores of anodic alumina membrane (AAM). Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to characterize the topography and crystalloid structure of NiO nanowire arrays. The length and diameter of the NiO nanowires depended on the thickness of the AAM and the diameter of the pores. The results indicated that the NiO nanowires were uniformly assembled into the ordered nanopores of the AAM and paralleled to each other. Nickel monoxide nanotubes were also fabricated with the same method by changing the immersing time. This new method to prepare NiO nanowire arrays may be important from gas sensors to various engineering materials. 展开更多
关键词 nanowire arrays sol-gel preparation NIO anodic alumina membrane (AAM)
下载PDF
Nickel and indium core-shell co-catalysts loaded silicon nanowire arrays for efficient photoelectrocatalytic reduction of CO_(2) to formate 被引量:3
7
作者 Wenchao Ma Mingcan Xie +4 位作者 Shunji Xie Longfu Wei Yichen Cai Qinghong Zhang Ye Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期422-428,共7页
Developing an efficient artificial photosynthetic system for transforming carbon dioxide and storing solar energy in the form of chemical bonds is one of the greatest challenges in modern chemistry.However,the limited... Developing an efficient artificial photosynthetic system for transforming carbon dioxide and storing solar energy in the form of chemical bonds is one of the greatest challenges in modern chemistry.However,the limited choice of catalysts with wide light absorption range,long-term stability and excellent selectivity for CO_(2) reduction makes the process sluggish.Here,a core-shell-structured nonnoble-metal Ni@In co-catalyst loaded p-type silicon nanowire arrays(SiNWs)for efficient CO_(2) reduction to formate is demonstrated.The formation rate and Faradaic efficiency of formate over the Ni@In/SiNWs catalyst reach 58μmol h^(-1) cm^(-2) and 87% under the irradiation of one simulated sunlight(AM 1.5 G,100 mW cm^(-2)),respectively,which are about 24 and 12 times those over the pristine SiNWs.The enhanced photoelectrocatalytic performance for CO_(2) reduction is attributed to the rational combination of Ni capable of effectively extracting the photogenerated electrons and In responsible for the selective activation of CO_(2). 展开更多
关键词 CO_(2)reduction PHOTOELECTROCATALYSIS Core-shell-structured co-catalyst Silicon nanowire arrays
下载PDF
Seed Free Growth of Aligned ZnO Nanowire Arrays on AZO Substrate 被引量:1
8
作者 刘利清 CAO Guangxia HONG Kunquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1372-1375,共4页
In the absence of commonly used seed layer, we can still successfully synthesized aligned ZnO nanowire arrays by the hydrothermal method. By using aluminum-doped zinc oxide(AZO) glass as a substrate, high-density and ... In the absence of commonly used seed layer, we can still successfully synthesized aligned ZnO nanowire arrays by the hydrothermal method. By using aluminum-doped zinc oxide(AZO) glass as a substrate, high-density and vertically aligned ZnO nanowires were synthesized directly on the substrate in the absence of the ZnO seed layer. The current-voltage curve indicated that the sample grown on AZO glass substrate in the absence of seed layer possesses better conductivity than that synthesized on FTO glass substrate with ZnO seed layer. Thus, a simplified, seed-free and low-cost experimental protocol was reported here for large-scale production of high quality ZnO nanowire arrays with promoted conductivity. 展开更多
关键词 ZnO nanowire arrays seed layer free AZO substrate CONDUCTIVITY
下载PDF
Superior surface electron energy level endows WP_(2) nanowire arrays with N_(2) fixation functions 被引量:1
9
作者 Dongdong Han Xiaojing Liu +10 位作者 Jinyan Cai Yufang Xie Shuwen Niu Yishang Wu Yipeng Zang Yanyan Fang Fengqi Zhao Wengang Qu Minghua Chen Gongming Wang Yitai Qian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期55-62,I0003,共9页
Nitrogen reduction reaction(NRR)under ambient conditions is always a long-standing challenge in science,due to the extreme difficulty in breaking the strong N≡N triple bond.The key to resolving this issue undoubtedly... Nitrogen reduction reaction(NRR)under ambient conditions is always a long-standing challenge in science,due to the extreme difficulty in breaking the strong N≡N triple bond.The key to resolving this issue undoubtedly lies in searching superior catalysts to efficiently activate and hydrogenate the stable nitrogen molecules.We herein evaluate the feasibility of WP_(2) for N2 activation and reduction,and first demonstrate WP_(2) with an impressive ammonia yield rate of 7.13 lg h^(-1)cm^(-2),representing a promising W-based catalyst for NRR.DFT analysis further reveals that the NRR catalysis on WP_(2) proceeds in a distal reaction pathway,and the exceptional NRR activity is originated from superior surface electron energy level matching between WP_(2) and NRR potential which facilitates the interfacial proton-coupled electron transfer dynamics.The successfully unraveling the intrinsic catalytic mechanism of WP_(2) for NRR could offer a powerful platform to manipulate the NRR activity by tuning the electron energy levels. 展开更多
关键词 WP_(2) ELECTROCATALYSIS Energy level Nitrogen reduction nanowire arrays
下载PDF
Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte 被引量:1
10
作者 Zhipeng Wen Dongzheng Wu +4 位作者 Hang Li Yingxin Lin Hang Li Yang Yang Jinbao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期282-290,共9页
In the investigation of the next-generation battery anode,Li metal has attracted increasing attention owing to its ultrahigh specific capacity and low reduction potential.However,its low columbic efficiency,limited cy... In the investigation of the next-generation battery anode,Li metal has attracted increasing attention owing to its ultrahigh specific capacity and low reduction potential.However,its low columbic efficiency,limited cycling life,and serious safety hazards have hindered the practical application of rechargeable Li metal batteries.Although several strategies have been proposed to enhance the electrochemical performance of Li metal anodes,most are centered around ether-based electrolytes,which are volatile and do not provide a sufficiently large voltage window.Therefore,we aimed to attain stable Li deposition/stripping in a commercial carbonate-based electrolyte.Herein,we have successfully synthesized hydrogen titanate(HTO)nanowire arrays decorated with homogenous Ag nanoparticles(NPs)(Ag@HTO)via simple hydrothermal and silver mirror reactions.The 3 D cross-linked array structure with Ag NPs provides preferable nucleation sites for uniform Li deposition,and most importantly,when assembled with the commercial LiNi_(0.5)Co0.2Mn_(0.3)O_(2) cathode material,the Ag@HTO could maintain a capacity retention ratio of 81.2% at 1 C after 200 cycles,however the pristine Ti foil failed to do so after only 60 cycles.Our research therefore reveals a new way of designing current collectors paired with commercial high voltage cathodes that can create high energy density Li metal batteries. 展开更多
关键词 Hydrogen titanate nanowire arrays Ag nanoparticles Li metal anode Carbonate-based electrolyte
下载PDF
Micromagnetic simulation on the dynamic susceptibility spectra of cobalt nanowires arrays:the effect of magnetostatic interaction 被引量:1
11
作者 陈文兵 韩满贵 +2 位作者 周浩 欧雨 邓龙江 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期590-596,共7页
Micromagnetic simulations have been performed to obtain the dynamic susceptibility spectra of 4×4 cobalt nanowire arrays with different spatial configurations and geometries. The susceptibility spectra of isolate... Micromagnetic simulations have been performed to obtain the dynamic susceptibility spectra of 4×4 cobalt nanowire arrays with different spatial configurations and geometries. The susceptibility spectra of isolated wires have also been simulated for comparison purposes. It is found that the susceptibility spectrum of nanowire array bears a lot of similarities to that of an isolated wire, such as the occurrences of the edge mode and the bulk resonance mode. The simulation results also reveal that the susceptibility spectrum of nanowire array behaves like that of single isolated wire as the interwire distance grows to an extent, which is believed due to the decrease of magnetostatic interaction among nanowires, and can be further confirmed by the static magnetic hysteresis simulations. In comparison with single nanowire, magnetostatic interaction may increase or decrease the resonance frequencies of nanowire arrays assuming a certain interwire distance when the length of array increases. Our simulation results are also analysed by employing the Kittel equation and recent theoretical studies. 展开更多
关键词 micromagnetic simulation dynamic susceptibility nanowire array magnetostatic interaction
下载PDF
In Situ Growth of 3D Hierarchical ZnO@Ni_xCo_(1-x)(OH)_y Core/Shell Nanowire/Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors 被引量:1
12
作者 Fumin Wang Mengchao Liu +2 位作者 Xubin Zhang Guojun Lv Mingshuai Sun 《Transactions of Tianjin University》 EI CAS 2018年第3期201-211,共11页
In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two... In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems. 展开更多
关键词 3D 混合 数组 扫描电子显微镜 生长层 电极材料 NI 泡沫
下载PDF
Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
13
作者 亢玉彬 林逢源 +7 位作者 李科学 唐吉龙 侯效兵 王登魁 方铉 房丹 王新伟 魏志鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期578-582,共5页
The self-catalyzed growth of Ga As nanowires(NWs)on silicon(Si)is an effective way to achieve integration between group III–V elements and Si.High-crystallinity uniform Ga As NW arrays were grown by solid-source mole... The self-catalyzed growth of Ga As nanowires(NWs)on silicon(Si)is an effective way to achieve integration between group III–V elements and Si.High-crystallinity uniform Ga As NW arrays were grown by solid-source molecular beam epitaxy(MBE).In this paper,we describe systematic experiments which indicate that the substrate treatment is crucial to the highly crystalline and uniform growth of one-dimensional nanomaterials.The influence of natural oxidation time on the crystallinity and uniformity of Ga As NW arrays was investigated and is discussed in detail.The Ga As NW crystallinity and uniformity are maximized after 20 days of natural oxidation time.This work provides a new solution for producing high-crystallinity uniform III–V nanowire arrays on wafer-scale Si substrates.The highly crystalline uniform NW arrays are expected to be useful for NW-based optical interconnects and Si platform optoelectronic devices. 展开更多
关键词 GAAS nanowire arrays self-catalyzed molecular beam epitaxy
下载PDF
Study of Shifted UV Emission Peak of ZnO Nanowire Arrays
14
作者 刘利清 LI Yongtao +2 位作者 HE Xuemin ZHANG Hongguang SHEN Jianping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第6期1048-1050,共3页
We have obtained vertically aligned ZnO nanowire arrays synthesized by microwave-assisted heating method with different growth time.From the room-temperature PL measurement,the strong deep-level emission and weak near... We have obtained vertically aligned ZnO nanowire arrays synthesized by microwave-assisted heating method with different growth time.From the room-temperature PL measurement,the strong deep-level emission and weak near band edge(NBE)emission can be seen.The deep-level emissions became weaker and deep-level emissions became stronger when the samples were annealed at 300℃for 30 min,meanwhile,the NBE emission peaks get red-shifted with growth time,and the longer the growth time,the more the peak shifting.This phenomenon can be attributed that the diameter of ZnO nanowires increases with growth time.This PL emission phenomenon is important in research of optoelectronic application. 展开更多
关键词 ZnO nanowire arrays photoluminescence property red shift different growth time
下载PDF
Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
15
作者 相文峰 刘旋 +3 位作者 黄晓炜 周庆莉 郭海中 赵嵩卿 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期414-418,共5页
We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central l... We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices. 展开更多
关键词 high-aligned Ni nanowire arrays flexible THz-wave modulator mechanical control modulation depth
下载PDF
The Effect of Silver-Plating Time on Silicon Nanowires Arrays Fabricated by Wet Chemical Etching Method
16
作者 Shanshan Wang Jun Han Shujing Yin 《Optics and Photonics Journal》 2019年第8期1-10,共10页
MACE (Metal-Assisted Chemical Etching) approach has drawn a lot of attentions due to its ability to create highly light-absorptive silicon surface. This method can generate numerous cylindrical shape microstructure on... MACE (Metal-Assisted Chemical Etching) approach has drawn a lot of attentions due to its ability to create highly light-absorptive silicon surface. This method can generate numerous cylindrical shape microstructure on the surface of silicon like a forest, which is called “silicon nanowires arrays”. This structure can dramatically suppress both reflection and transmission at the wavelength range from 400 nm to near-infrared 1800 nm by increasing the propagation path of light. In this paper, ordered silicon nanowires arrays with a large area are prepared by wet chemical etching. It is demonstrated that the SiNWs (Silicon nanowires) arrays with different morphologies can be fabricated from monocrystalline silicon of a given orientation by changing silver-plating time. Excellent anti-reflection performance in broadband wavelengths and incident angle is obtained. The fabrication method and potential application of such SiNWs in the field of photoelectric detection have great value and can provide reference for further research in this field. 展开更多
关键词 MACE Silicon nanowireS arrays ANTI-REFLECTION Performance PHOTOELECTRIC Detection
下载PDF
Effect of Polyethyleneimine Assisting the Growth of Eu-doped ZnO Nanowire Arrays in Mannich Reaction
17
作者 黎晓 甘孟瑜 +2 位作者 杨燕 马利 王辉辉 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第10期1656-1666,共11页
In study on the growth reaction mechanism of Eu-doped ZnO nanowire(NW), the intermedium of reaction is characterized by measures such as FTIR. Besides, the influences of polyethyleneimine(PEI) on morphology, struc... In study on the growth reaction mechanism of Eu-doped ZnO nanowire(NW), the intermedium of reaction is characterized by measures such as FTIR. Besides, the influences of polyethyleneimine(PEI) on morphology, structure and photoelectric property of NW are observed by SEM, TEM, XRD, UV-vis and PL spectrum. According to the result, it manifests that Eu-doped ZnO NW array growth response experiences six mutually associated reaction processes in PEI-HMTA system:(a) chelation reaction of PEI and Zn^2+ & Eu^3+;(b) protonation reaction of PEI and NH_3;(c) decomposition reaction of hexamethylenetetramine(HMTA);(d) Mannich reaction of HCHO and PEI;(e) formation of precursor of Eu-doped ZnO;(f) dehydration condensation of Eu-doped ZnO precursors, further forming a doped ZnO NW array. Among them, PEI is the key factor of the whole doping growth reaction process. It both plays a role in modifying the growth of ZnO NW and makes it become longer and thinner. In the meantime, it also facilitates doping of Eu and enables ZnO NW to capture more photoelectrons and higher transmission rate, which is critical to improve photovoltaic performance of optoelectronic devices. 展开更多
关键词 polyethyleneimine Eu-doped ZnO nanowire arrays mannich reaction
下载PDF
Bi-based Nanowire and Nanojunction Arrays:Fabrication and Physical Properties
18
作者 Liang LI Guanghai LI Xiaosheng FANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期166-181,共16页
This article reviews the recent developments in the fabrication and properties of one-dimensional (1D) Bi-based nanostructures, including Bi, Sb, BixSb1-x and Bi2Te3 nanowire arrays, and Bi-Bi and Bi-Sb nanojunction... This article reviews the recent developments in the fabrication and properties of one-dimensional (1D) Bi-based nanostructures, including Bi, Sb, BixSb1-x and Bi2Te3 nanowire arrays, and Bi-Bi and Bi-Sb nanojunction arrays. In this article, we present an efiective method to fabricate Bi nanowire arrays with difierent diameters in anodic alumina membrane (AAM) with a single pore size by the pulsed electrodeposition. The fabrication of the high-filling and ordered Bi1-xSbx and Bi2Te3 single crystalline nanowire arrays, the Bi nanowire metalsemiconductor homojunction and Bi-Sb nanowire metal-semiconductor heterojunction arrays by the pulsed electrodeposition are reported. The factors controlling the composition, diameter, growth rate and orientation of the nanowires are analyzed, and the growth mechanism of the nanowire and nanojunction arrays are discussed together with the study of the electrical and thermal properties of Bi-based nanowires and nanojunctions.Finally, this review is concluded with some perspectives on the research directions and focuses in the Bi-based nanomaterials fields. 展开更多
关键词 BI ONE-DIMENSIONAL nanowire array THERMOELECTRIC ELECTrodEPOSITION
下载PDF
Structural and Magnetic Properties of Electrodeposited Ni_(70)Fe_(30) Nanowire Array
19
作者 XU Jinxia WANG Keyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期472-474,共3页
Ordered Ni70Fe30 nanowire array was fabricated in a porous alumina template by alternating current electrodeposition. The structural and magnetic properties of the as-obtained nanowire array were investigated by SEM, ... Ordered Ni70Fe30 nanowire array was fabricated in a porous alumina template by alternating current electrodeposition. The structural and magnetic properties of the as-obtained nanowire array were investigated by SEM, TEM, XRD, EDS and VSM. The results indicate that the as-obtained Ni70Fe30 nanowires exhibit a diameter of about 69.9 nm and aspect ratio of more than 60. Meanwhile, a preferred orientation [110] of bcc lattice was observed. The as-obtained nanowire array has an obvious magnetic anisotropy, of which the easy direction is perpendicular to the surface of the array. Moreover, after annealed, the Ni70Fe30 nanowire array exhibits an enhanced magnetic anisotropy. 展开更多
关键词 Ni70Fe30 nanowire array preferential orientation magnetic anisotropy
下载PDF
An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays
20
作者 王明利 张常兴 +2 位作者 吴正龙 井西利 许海军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期547-553,共7页
A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluate... A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensifies of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants. 展开更多
关键词 surface-enhanced Raman scattering nanowire array quantitative detection
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部