Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits.The performance of these quantum devices heavily rel...Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits.The performance of these quantum devices heavily relies on the quality of the induced superconducting gap.A hard gap.展开更多
Second harmonic generation(SHG)in optical materials serves as important techniques for laser source generations in awkward spectral ranges,physical identities of materials in crystalline symmetry and interfacial confi...Second harmonic generation(SHG)in optical materials serves as important techniques for laser source generations in awkward spectral ranges,physical identities of materials in crystalline symmetry and interfacial configuration.Here,we present a comprehensive review on SHGs in nanowires(NWs),which have been recognized as an important element in constructing photonic and optoelectronic devices with compact footprint and high quantum yield.Relying on NW’s one-dimensional geometry,its SHG could be employed as a sophisticated spectroscopy to determine the crystal phase and orientation,as well as the internal strain.The enhancements of SHG efficiency in NWs are discussed then,which were realized by hybrid integrating them with two-dimensional materials,nanophotonic and plasmonic structures.Finally,the potential applications of NW SHGs are concluded,including the areas of optical correlators and constructions of on-chip nano-laser sources.展开更多
We estimate the thermal properties of unsmooth Si nanowires,considering key factors such as size(diameter),surface texture(roughness)and quantum size effects(phonon states)at different temperatures.For nanowires with ...We estimate the thermal properties of unsmooth Si nanowires,considering key factors such as size(diameter),surface texture(roughness)and quantum size effects(phonon states)at different temperatures.For nanowires with a diameter of less than 20 nm,we highlight the importance of quantum size effects in heat capacity calculations,using dispersion relations derived from the modified frequency equation for the elasticity of a rod.The thermal conductivities of nanowires with diameters of 37,56,and 115nm are predicted using the Fuchs–Sondheimer model and Soffer’s specular parameter.Notably,the roughness parameters are chosen to reflect the technological characteristics of the real surfaces.Our findings reveal that surface texture plays a significant role in thermal conductivity,particularly in the realm of ballistic heat transfer within nanowires.This study provides practical recommendations for developing new thermal management materials.展开更多
Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-d...Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.展开更多
Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabricat...Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabrication strategy for piezoresistive flexible pressure sensors.By embedding silver nanowires into a polydimethylsiloxane layer with micro-pyramids on its surface,a flexible pressure sensor is created that can detect low pressure (17.3 Pa) with fast response (<20 ms) and high sensitivity (69.6 mA kPa-1).Furthermore,the pressure sensor exhibits a sensitive and stable response to a small amount of water flowing on its surface.On this basis,the flexible pressure sensor is innovatively combined with a micro-rotor to fabricate a novel urinary flow-rate meter (uroflowmeter),and results from a simulated human urination experiment show that the uroflowmeter accurately captured all the essential shape characteristics that were present in the pump-simulated urination curves.Looking ahead,this research provides a new reference for using flexible pressure sensors in urinary flow-rate monitoring.展开更多
Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-typ...Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics.Herein,a PEC-type photosensor was carefully designed and constructed by employing gallium nitride(GaN)p-n homojunction semiconductor nanowires on silicon,with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide(CoNiO_(x)).Essentially,the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface,while CoNiO_(x)decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface.Consequently,the constructed photosensor achieves a high responsivity of 247.8 mA W^(-1)while simultaneously exhibiting excellent operating stability.Strikingly,based on the remarkable stability and high responsivity of the device,a glucose sensing system was established with a demonstration of glucose level determination in real human serum.This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.展开更多
Single zinc oxide nanowires(ZnO NWs)are promising for nanogenerators because of their excellent semiconducting and piezoelectric properties,but characterizing the latter efficiently is challenging.As reported here,an ...Single zinc oxide nanowires(ZnO NWs)are promising for nanogenerators because of their excellent semiconducting and piezoelectric properties,but characterizing the latter efficiently is challenging.As reported here,an electrical breakdown strategy was used to construct single ZnO NWs with a specific length.With the high operability of a nanomanipulator in a scanning electron microscope,ZnO-NW-based twoprobe and three-probe structures were constructed for fabricating AC/DC nanogenerators,respectively.For a ZnO NW,an AC output of between−15.31 mV and 5.82 mV was achieved,while for a DC nanogenerator,an output of24.3 mV was realized.Also,the three-probe structure’s output method was changed to verify the distribution of piezoelectric charges when a single ZnO NW is bent by a probe,and DC outputs of different amplitudes were achieved.This study provides a low-cost,highly convenient,and operational method for studying the AC/DC output characteristics of single NWs,which is beneficial for the further development of nanogenerators.展开更多
GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan...GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.展开更多
Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources.A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantu...Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources.A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots.Here,we report the growth of embedded GaAs_(1−x)Sb_(x) quantum dots in GaAs nanowires by molecular-beam epitaxy.It is found that the size of the GaAs_(1−x)Sb_(x) quantum dot can be well-defined by the GaAs nanowire.Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature.All GaAs_(1−x)Sb_(x) quantum dots exhibit a pure zinc-blende phase.In addition,we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs_(1−x)Sb_(x) quantum dots.Different from the traditional growth process of the passivation layer,GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs_(1−x)Sb_(x) quantum dots.The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer.The successful fabrication of embedded high-quality GaAs_(1−x)Sb_(x) quantum dots lays the foundation for the realization of GaAs_(1−x)Sb_(x)-based single photon sources.展开更多
Layered double hydroxides(LDHs) are a class of synthetic anion clays, characterized by the formula [MⅡ1-xMⅢx(OH)2]x+(An-)x/n5yH2O(where M=metal and A=anion, usually carbonate)[1-3]. A large number of LDHs w...Layered double hydroxides(LDHs) are a class of synthetic anion clays, characterized by the formula [MⅡ1-xMⅢx(OH)2]x+(An-)x/n5yH2O(where M=metal and A=anion, usually carbonate)[1-3]. A large number of LDHs with a wide variety of MⅡ-MⅢ cation pairs including MⅠ-MⅢ(e.g., Li-Al) and MⅡ-MⅣ(e.g., Co-Ti) have been reported. Thus the identities of the cations(MⅠ, MⅡ, MⅢ and MⅣ) and the interlayer anion(An-) together with the value of the stoichiometric coefficient(x) may vary widely, giving rise to a large class of isostructural materials. As a result,展开更多
In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and uni...In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and unique structure,which can meet the requirements of strong reflection loss(RL)and wide absorption bandwidth of EMW absorption materials.In this manuscript,indium nanoparticles/porous carbon(In/C)nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of450°C.Indium nanoparticles are evenly attached and embedded on porous carbon.Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance,which is due to the low temperature carbonization.Thus,graphene(Gr)nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption.The minimum RL of the In/C-Gr-4 composite is up to-43.7 dB with a thin thickness of 1.30 mm.In addition,when the thickness is further reduced to 1.14 mm,the minimum RL of-39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz(from 14.3 to 18.0 GHz)can be achieved.This work indicates that In/C-Gr composites show excellent EMW absorption performance.展开更多
Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable m...Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable materials and wasteful fabrication methods. Herein, we present ZnO nanowires(NWs) based degradable high-performance UV photodetectors(PDs) on flexible chitosan substrate. Systematic investigations reveal the presented device exhibits excellent photo response, including high responsivity(55 A/W), superior specific detectivity(4×10^(14) jones), and the highest gain(8.5×10~(10)) among the reported state of the art biodegradable PDs. Further, the presented PDs display excellent mechanical flexibility under wide range of bending conditions and thermal stability in the measured temperature range(5–50 ℃).The biodegradability studies performed on the device, in both deionized(DI) water(pH≈6) and PBS solution(pH=7.4),show fast degradability in DI water(20 mins) as compared to PBS(48 h). These results show the potential the presented approach holds for green and cost-effective fabrication of wearable, and disposable sensing systems with reduced adverse environmental impact.展开更多
Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIB...Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIBs generally suffer from poor cycling performance and unsatisfied capacity,and inactive components of conductive agents,binders,and current collector further lower their overall capacity.Herein,we prepare coral-like carbon nanowres(CCNWs)doped with nitrogen as a binder-free anode material for K^(+)-ion storage,in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability,to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process.As a result,the CCNW anode possesses a hybrid K^(+)-storage mechanism of diffusive behavior and capacitive adsorption,and stably delivers a high capacity of 276 mAh g^(-1)at 50 mA g^(-1),good rate capability up to 2 A g^(-1),and long-term cycling stability with 93%capacity retention after 2000 cycles at 1 A g^(-1).Further,assembling this CCNW anode with an environmentally benign expanded graphite(EG)cathode yields a proof-of-concept KDIB,which shows a high specific capacity of 134.4 mAh g^(-1)at 100 mA g^(-1),excellent rate capability of 106.5 mAh g^(-1)at 1 A g^(-1),and long-term cycling stability over 1000 cycles with negligible capacity loss.This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices.展开更多
Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering...Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering in hetero-catalysis offers a promising route to boost their catalytic activity.Herein,we report on a class of monodispersed ultrathin twisty PdBi alloy nanowires(TNWs)assemblies with face-centered structures that drive AORs.These thin nanowire structures expose a large number of reactive sites.Strikingly,Pd_(6)Bi_(1)TNWs show an excellent current density of 2066,3047,and 1231 mA mg_(Pd)^(-1)for oxidation of ethanol,ethylene glycol,and glycerol,respectively.The“volcano-like”behaviors observed on PdBi TNWs for AORs indicate that the maximum catalytic mass activity is a well balance between active intermediates and blocking species at the interface.This study offers an effective and universal method to build novel nanocatalysts in various applications by rationally designing highly efficient catalysts with specific strain.展开更多
Because of their unique mechanical and electrical properties,zinc oxide(ZnO)nanowires are used widely in microscopic and nanoscopic devices and structures,but characterizing them remains challenging.In this paper,two ...Because of their unique mechanical and electrical properties,zinc oxide(ZnO)nanowires are used widely in microscopic and nanoscopic devices and structures,but characterizing them remains challenging.In this paper,two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator.To pick up nanowires efficiently,direct sampling is compared with electrification fusing,and experiments show that direct sampling is more stable while electrification fusing is more efficient.ZnO nanowires have cut-off properties,and good Schottky contact with the tungsten probes was established.In piezoelectric experiments,the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V,and its impedance decreased with increasing input signal frequency until it became stable.This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.展开更多
Organic electrode materials are promising for lithium-ion batteries(LIBs) because of their environmental friendliness and structural diversity.However,they always suffer from limited capacity,poor cycling stability,an...Organic electrode materials are promising for lithium-ion batteries(LIBs) because of their environmental friendliness and structural diversity.However,they always suffer from limited capacity,poor cycling stability,and rate performance.Herein,hexaazatrinaphthalene-based azo-linked hyperbranched polymer(HAHP) is designed and synthesized as a cathode for LIBs.However,the densely stacked morphology lowers the chance of the active sites participating in the redox reaction.To address this issue,the singlewalled carbon nanotube(SWCNT) template is used to induce the growth of nanosized HAHP on the surface of SWCNTs.The HAHP@SWCNT nanocomposites have porous structures and highly accessible active sites.Moreover,the strong π-π interaction between HAHP and highly conductive SWCNTs effectively endows the HAHP@SWCNT nanocomposites with improved cycling stability and fast charge-discharge rates.As a result,the HAHP@SWCNT nanocomposite cathode shows a high specific capacity(320.4 mA h g^(-1)at 100 mA g^(-1)),excellent cycling stability(800 cycles;290 mA h g^(-1)at 100 mA g^(-1),capacity retained 91%) and outstanding rate performance(235 mA h g^(-1)at 2000 mA g^(-1),76% capacity retention versus 50 mA g^(-1)).This work provides a strategy to combine the macromolecular structural design and micromorphology control of electrode materials for obtaining organic polymer cathodes for high-performance LIBs.展开更多
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t...Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.展开更多
Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-dop...Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-doped tin oxide(FTO)glass and employed as the photoanode for photoelectrocatalytic degradation of methylene blue simulated dye wastewater.The Ovsites on the a-Fe_(2)O_(3)-NA surface are the active sites for methylene blue(MB)adsorption.Electrons transfer from the adsorbed MB to Fe-O is detected.Compared with electrocatalytic and photocatalytic degradation processes,the photoelectrocatalytic(PEC)process exhibited the best degrading performance and the largest kinetic constant.Hydroxyl,superoxide free radicals,and photo-generated holes play a jointly leading role in the PEC degradation.A possible degrading pathway is suggested by liquid chromatography-mass spectroscopy analysis.This work demonstrates that photoelectrocatalysis by a-Fe_(2)O_(3)-NA has a remarkable superiority over photocatalysis and electrocatalysis in MB degradation.The in-depth investigation of photoelectrocatalytic degradation mechanism in this study is meaningful for organic wastewater treatment.展开更多
This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LI...This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band.展开更多
The polarization characteristics of ultrathin CsPbBr3nanowires are investigated. Especially, for the height of crosssection of nanowires between 2 nm and 25 nm, the normalized intensity and polarization ratio ρ of Cs...The polarization characteristics of ultrathin CsPbBr3nanowires are investigated. Especially, for the height of crosssection of nanowires between 2 nm and 25 nm, the normalized intensity and polarization ratio ρ of CsPbBr3nanowires with triangular, square and hexagonal cross-section shapes are compared. The results show that, along with the increase of the height of cross-section, the polarization ratios of these three nanowires decrease until T = 15 nm, and increase afterwards.Also, along with the increase of the cross-section area up to 100 nm~2, the polarization ratios of these three nanowires increase too. In general, for the same height or area, the polarization ratio ρ of these nanowires follows ρhexagon> ρsquare>ρtriangle. Therefore, the nanowire with the hexagonal cross-section should be chosen, where for a cross-section height of 2 nm and a length-height ratio of 20 : 1, the maximal polarization ratio is 0.951 at the longitudinal center of the NW. Further,for the hexagonal NW with a cross-section height of 10 nm, the hexagonal NW with a length-height ratio of 45 : 1 exhibits the maximal polarization ratio at the longitudinal center of the NW. These simulation results predict the feasible size and shape of CsPbBr3nanowire devices with high polarization ratios.展开更多
基金supported by Tsinghua University Initiative Scientific Research Programthe National Natural Science Foundation of China(Grant No.92065206)+1 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302400)the support from National Postdoctoral Researcher Program of China(Grant No.GZC20231368)。
文摘Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits.The performance of these quantum devices heavily relies on the quality of the induced superconducting gap.A hard gap.
基金supported by the Key Research and Development Program(Grant No.2022YFA1404800)the National Natural Science Foundation of China(Grant Nos.62105267 and 62375225)+1 种基金the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSY004)Xi’an Science and Technology Plan Project(Grant No.2023JH-ZCGJ-0023)。
文摘Second harmonic generation(SHG)in optical materials serves as important techniques for laser source generations in awkward spectral ranges,physical identities of materials in crystalline symmetry and interfacial configuration.Here,we present a comprehensive review on SHGs in nanowires(NWs),which have been recognized as an important element in constructing photonic and optoelectronic devices with compact footprint and high quantum yield.Relying on NW’s one-dimensional geometry,its SHG could be employed as a sophisticated spectroscopy to determine the crystal phase and orientation,as well as the internal strain.The enhancements of SHG efficiency in NWs are discussed then,which were realized by hybrid integrating them with two-dimensional materials,nanophotonic and plasmonic structures.Finally,the potential applications of NW SHGs are concluded,including the areas of optical correlators and constructions of on-chip nano-laser sources.
基金financial support from the China Scholarship Council.
文摘We estimate the thermal properties of unsmooth Si nanowires,considering key factors such as size(diameter),surface texture(roughness)and quantum size effects(phonon states)at different temperatures.For nanowires with a diameter of less than 20 nm,we highlight the importance of quantum size effects in heat capacity calculations,using dispersion relations derived from the modified frequency equation for the elasticity of a rod.The thermal conductivities of nanowires with diameters of 37,56,and 115nm are predicted using the Fuchs–Sondheimer model and Soffer’s specular parameter.Notably,the roughness parameters are chosen to reflect the technological characteristics of the real surfaces.Our findings reveal that surface texture plays a significant role in thermal conductivity,particularly in the realm of ballistic heat transfer within nanowires.This study provides practical recommendations for developing new thermal management materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52130604 and 51825604)。
文摘Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires.
基金supported by the National Natural Science Foundation of China(Grant No.82270819)the Project of Integra-tive Chinese and Western Medicine(Grant No.ZXXT-202206)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFC3606001)the Basic Science Research Project of Renji Hospital(Grant No.RJTI22-MS-015).
文摘Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabrication strategy for piezoresistive flexible pressure sensors.By embedding silver nanowires into a polydimethylsiloxane layer with micro-pyramids on its surface,a flexible pressure sensor is created that can detect low pressure (17.3 Pa) with fast response (<20 ms) and high sensitivity (69.6 mA kPa-1).Furthermore,the pressure sensor exhibits a sensitive and stable response to a small amount of water flowing on its surface.On this basis,the flexible pressure sensor is innovatively combined with a micro-rotor to fabricate a novel urinary flow-rate meter (uroflowmeter),and results from a simulated human urination experiment show that the uroflowmeter accurately captured all the essential shape characteristics that were present in the pump-simulated urination curves.Looking ahead,this research provides a new reference for using flexible pressure sensors in urinary flow-rate monitoring.
基金funded by the National Natural Science Foundation of China(Grant Nos.62322410,52272168,52161145404,81974530,and 82271721)the Fundamental Research Funds for the Central Universities(Grant No.WK3500000009)+1 种基金the International Projects of the Chinese Academy of Science(CAS)under Grant No.211134KYSB20210011Hubei Provincial Science and Technology Innovation Talents and Services Special Program(Grant No.2022EHB039)。
文摘Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics.Herein,a PEC-type photosensor was carefully designed and constructed by employing gallium nitride(GaN)p-n homojunction semiconductor nanowires on silicon,with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide(CoNiO_(x)).Essentially,the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface,while CoNiO_(x)decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface.Consequently,the constructed photosensor achieves a high responsivity of 247.8 mA W^(-1)while simultaneously exhibiting excellent operating stability.Strikingly,based on the remarkable stability and high responsivity of the device,a glucose sensing system was established with a demonstration of glucose level determination in real human serum.This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.
基金supported by the Research Fund Program of the Guangdong Provincial Key Laboratory of Fuel Cell Technology (Grant No.FC202204).
文摘Single zinc oxide nanowires(ZnO NWs)are promising for nanogenerators because of their excellent semiconducting and piezoelectric properties,but characterizing the latter efficiently is challenging.As reported here,an electrical breakdown strategy was used to construct single ZnO NWs with a specific length.With the high operability of a nanomanipulator in a scanning electron microscope,ZnO-NW-based twoprobe and three-probe structures were constructed for fabricating AC/DC nanogenerators,respectively.For a ZnO NW,an AC output of between−15.31 mV and 5.82 mV was achieved,while for a DC nanogenerator,an output of24.3 mV was realized.Also,the three-probe structure’s output method was changed to verify the distribution of piezoelectric charges when a single ZnO NW is bent by a probe,and DC outputs of different amplitudes were achieved.This study provides a low-cost,highly convenient,and operational method for studying the AC/DC output characteristics of single NWs,which is beneficial for the further development of nanogenerators.
文摘GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.
基金supported by the National Natural Science Foundation of China(Grant No.12374459)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0460000)support from Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant Nos.2017156 and Y2021043).
文摘Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources.A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots.Here,we report the growth of embedded GaAs_(1−x)Sb_(x) quantum dots in GaAs nanowires by molecular-beam epitaxy.It is found that the size of the GaAs_(1−x)Sb_(x) quantum dot can be well-defined by the GaAs nanowire.Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature.All GaAs_(1−x)Sb_(x) quantum dots exhibit a pure zinc-blende phase.In addition,we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs_(1−x)Sb_(x) quantum dots.Different from the traditional growth process of the passivation layer,GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs_(1−x)Sb_(x) quantum dots.The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer.The successful fabrication of embedded high-quality GaAs_(1−x)Sb_(x) quantum dots lays the foundation for the realization of GaAs_(1−x)Sb_(x)-based single photon sources.
基金Supported by Excellent Young Scholars Research Fund of Beijing Institute of Technology(No.000Y05-22)the Key Labora-tory of Beijing City on PreparationProcessing of Novel Polymer Materials(No.SYS100100420) in Beijing University of ChemicalTechnology.
文摘Layered double hydroxides(LDHs) are a class of synthetic anion clays, characterized by the formula [MⅡ1-xMⅢx(OH)2]x+(An-)x/n5yH2O(where M=metal and A=anion, usually carbonate)[1-3]. A large number of LDHs with a wide variety of MⅡ-MⅢ cation pairs including MⅠ-MⅢ(e.g., Li-Al) and MⅡ-MⅣ(e.g., Co-Ti) have been reported. Thus the identities of the cations(MⅠ, MⅡ, MⅢ and MⅣ) and the interlayer anion(An-) together with the value of the stoichiometric coefficient(x) may vary widely, giving rise to a large class of isostructural materials. As a result,
基金supported by the National Natural Science Foundation of China(No.52071280)the Natural Science Foundation of Hebei Province,China(No.E2020203151)+2 种基金the Research Program of the College Science&Technology of Hebei Province,China(No.ZD2020121)the Cultivation Project for Basic Research and Innovation of Yanshan University(No.2021LGZD016)the Innovation Capability Improvement Project of Hebei province(No.22567605H)。
文摘In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and unique structure,which can meet the requirements of strong reflection loss(RL)and wide absorption bandwidth of EMW absorption materials.In this manuscript,indium nanoparticles/porous carbon(In/C)nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of450°C.Indium nanoparticles are evenly attached and embedded on porous carbon.Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance,which is due to the low temperature carbonization.Thus,graphene(Gr)nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption.The minimum RL of the In/C-Gr-4 composite is up to-43.7 dB with a thin thickness of 1.30 mm.In addition,when the thickness is further reduced to 1.14 mm,the minimum RL of-39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz(from 14.3 to 18.0 GHz)can be achieved.This work indicates that In/C-Gr composites show excellent EMW absorption performance.
基金supported in part by Engineering and Physical Science Research Council (EPSRC) through Engineering Fellowship (EP/R029644/1)Hetero-print Programme Grant (EP/R03480X/1)European Commission through grant references (H2020-MSCAITN2019-861166)。
文摘Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable materials and wasteful fabrication methods. Herein, we present ZnO nanowires(NWs) based degradable high-performance UV photodetectors(PDs) on flexible chitosan substrate. Systematic investigations reveal the presented device exhibits excellent photo response, including high responsivity(55 A/W), superior specific detectivity(4×10^(14) jones), and the highest gain(8.5×10~(10)) among the reported state of the art biodegradable PDs. Further, the presented PDs display excellent mechanical flexibility under wide range of bending conditions and thermal stability in the measured temperature range(5–50 ℃).The biodegradability studies performed on the device, in both deionized(DI) water(pH≈6) and PBS solution(pH=7.4),show fast degradability in DI water(20 mins) as compared to PBS(48 h). These results show the potential the presented approach holds for green and cost-effective fabrication of wearable, and disposable sensing systems with reduced adverse environmental impact.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2019B090914003)National Natural Science Foundation of China(11904379,51972329,51822210,52061160484)+2 种基金Shenzhen Science and Technology Planning Project(JCYJ20190807171803813,JCYJ2020010911562492,KQTD20161129150510559)China Postdoctoral Science Foundation(2018M643235)Guangdong Basic and Applied Basic Research Foundation(2019A1515011902,2019TX05L389)。
文摘Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIBs generally suffer from poor cycling performance and unsatisfied capacity,and inactive components of conductive agents,binders,and current collector further lower their overall capacity.Herein,we prepare coral-like carbon nanowres(CCNWs)doped with nitrogen as a binder-free anode material for K^(+)-ion storage,in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability,to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process.As a result,the CCNW anode possesses a hybrid K^(+)-storage mechanism of diffusive behavior and capacitive adsorption,and stably delivers a high capacity of 276 mAh g^(-1)at 50 mA g^(-1),good rate capability up to 2 A g^(-1),and long-term cycling stability with 93%capacity retention after 2000 cycles at 1 A g^(-1).Further,assembling this CCNW anode with an environmentally benign expanded graphite(EG)cathode yields a proof-of-concept KDIB,which shows a high specific capacity of 134.4 mAh g^(-1)at 100 mA g^(-1),excellent rate capability of 106.5 mAh g^(-1)at 1 A g^(-1),and long-term cycling stability over 1000 cycles with negligible capacity loss.This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices.
基金supported by the National Natural Science Foundation of China(22172084 and 21773133)the World-Class Discipline Program of Shandong Province,China。
文摘Direct alcohol fuel cells(DAFCs)are powered by the alcohol electro-oxidation reaction(AOR),where an electrocatalyst with an optimal electronic structure can accelerate the sluggish AOR.Interestingly,strain engineering in hetero-catalysis offers a promising route to boost their catalytic activity.Herein,we report on a class of monodispersed ultrathin twisty PdBi alloy nanowires(TNWs)assemblies with face-centered structures that drive AORs.These thin nanowire structures expose a large number of reactive sites.Strikingly,Pd_(6)Bi_(1)TNWs show an excellent current density of 2066,3047,and 1231 mA mg_(Pd)^(-1)for oxidation of ethanol,ethylene glycol,and glycerol,respectively.The“volcano-like”behaviors observed on PdBi TNWs for AORs indicate that the maximum catalytic mass activity is a well balance between active intermediates and blocking species at the interface.This study offers an effective and universal method to build novel nanocatalysts in various applications by rationally designing highly efficient catalysts with specific strain.
基金supported by the Research Fund Program of the Guangdong Provincial Key Laboratory of Fuel Cell Technology。
文摘Because of their unique mechanical and electrical properties,zinc oxide(ZnO)nanowires are used widely in microscopic and nanoscopic devices and structures,but characterizing them remains challenging.In this paper,two pick-up strategies are proposed for characterizing the electrical properties of ZnO nanowires using SEM equipped with a nanomanipulator.To pick up nanowires efficiently,direct sampling is compared with electrification fusing,and experiments show that direct sampling is more stable while electrification fusing is more efficient.ZnO nanowires have cut-off properties,and good Schottky contact with the tungsten probes was established.In piezoelectric experiments,the maximum piezoelectric voltage generated by an individual ZnO nanowire was 0.07 V,and its impedance decreased with increasing input signal frequency until it became stable.This work offers a technical reference for the pick-up and construction of nanomaterials and nanogeneration technology.
基金supported by the National Natural Science Foundation of China(Grant No.51903100)the Science and Technology Development Plan of Jilin Province,China(Grant No.20210402060GH)。
文摘Organic electrode materials are promising for lithium-ion batteries(LIBs) because of their environmental friendliness and structural diversity.However,they always suffer from limited capacity,poor cycling stability,and rate performance.Herein,hexaazatrinaphthalene-based azo-linked hyperbranched polymer(HAHP) is designed and synthesized as a cathode for LIBs.However,the densely stacked morphology lowers the chance of the active sites participating in the redox reaction.To address this issue,the singlewalled carbon nanotube(SWCNT) template is used to induce the growth of nanosized HAHP on the surface of SWCNTs.The HAHP@SWCNT nanocomposites have porous structures and highly accessible active sites.Moreover,the strong π-π interaction between HAHP and highly conductive SWCNTs effectively endows the HAHP@SWCNT nanocomposites with improved cycling stability and fast charge-discharge rates.As a result,the HAHP@SWCNT nanocomposite cathode shows a high specific capacity(320.4 mA h g^(-1)at 100 mA g^(-1)),excellent cycling stability(800 cycles;290 mA h g^(-1)at 100 mA g^(-1),capacity retained 91%) and outstanding rate performance(235 mA h g^(-1)at 2000 mA g^(-1),76% capacity retention versus 50 mA g^(-1)).This work provides a strategy to combine the macromolecular structural design and micromorphology control of electrode materials for obtaining organic polymer cathodes for high-performance LIBs.
基金This work was supported by the National Natural Science Foundation of China (51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金the Special Grade of the Financial Support from the China Postdoctoral Science Foundation (2020T130469)the Sci-ence and Technology Plans of Tianjin (19PTSYJC00010)the Science&Technol-ogy Development Fund of Tianjin Education Commission for Higher Education (2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.
基金financially supported by the National Natural Science Foundation of China (22005097)the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University,Xiamen 361005,P.R.China (201815)。
文摘Efficiently and thoroughly degrading organic dyes in wastewater is of great importance and challenge.Herein,vertically oriented mesoporous a-Fe_(2)O_(3)nanorods array(a-Fe_(2)O_(3)-NA)is directly grown on fluorine-doped tin oxide(FTO)glass and employed as the photoanode for photoelectrocatalytic degradation of methylene blue simulated dye wastewater.The Ovsites on the a-Fe_(2)O_(3)-NA surface are the active sites for methylene blue(MB)adsorption.Electrons transfer from the adsorbed MB to Fe-O is detected.Compared with electrocatalytic and photocatalytic degradation processes,the photoelectrocatalytic(PEC)process exhibited the best degrading performance and the largest kinetic constant.Hydroxyl,superoxide free radicals,and photo-generated holes play a jointly leading role in the PEC degradation.A possible degrading pathway is suggested by liquid chromatography-mass spectroscopy analysis.This work demonstrates that photoelectrocatalysis by a-Fe_(2)O_(3)-NA has a remarkable superiority over photocatalysis and electrocatalysis in MB degradation.The in-depth investigation of photoelectrocatalytic degradation mechanism in this study is meaningful for organic wastewater treatment.
基金We are grateful for financial supports from the Ministry of Science and Technology of China(Grant No.2021YFA1401100)National Natural Science Foundation of China(Grant Nos.12074123,11804227,91950112),and the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band.
文摘The polarization characteristics of ultrathin CsPbBr3nanowires are investigated. Especially, for the height of crosssection of nanowires between 2 nm and 25 nm, the normalized intensity and polarization ratio ρ of CsPbBr3nanowires with triangular, square and hexagonal cross-section shapes are compared. The results show that, along with the increase of the height of cross-section, the polarization ratios of these three nanowires decrease until T = 15 nm, and increase afterwards.Also, along with the increase of the cross-section area up to 100 nm~2, the polarization ratios of these three nanowires increase too. In general, for the same height or area, the polarization ratio ρ of these nanowires follows ρhexagon> ρsquare>ρtriangle. Therefore, the nanowire with the hexagonal cross-section should be chosen, where for a cross-section height of 2 nm and a length-height ratio of 20 : 1, the maximal polarization ratio is 0.951 at the longitudinal center of the NW. Further,for the hexagonal NW with a cross-section height of 10 nm, the hexagonal NW with a length-height ratio of 45 : 1 exhibits the maximal polarization ratio at the longitudinal center of the NW. These simulation results predict the feasible size and shape of CsPbBr3nanowire devices with high polarization ratios.